
Multi-Armed Bandits
Pure Exploration in Multi-Armed Bandits

Continuously-Armed Bandits
Adversarial Multi-Armed Bandits

References

Bandits Games
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Introduction

Bandits games are a framework for sequential decision making
under various scenarios:

Continuous or discrete set of actions,

Adversarial or stochastic environment,

different objectives: cumulative regret or simple regret,

... and many more extensions, with additional rules, new regret
notions, different feedback assumptions, etc ...
Real applications include:

ads placement on webpages,

computer Go,

cognitive radio,

packets routing.
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Classical bandit game, Robbins (1952)

Parameters available to the player: the number of rounds n and
the number of arms K .
Parameters unknown to the player: the reward distributions
(over [0, 1]) ν1, . . . , νK of the arms (with respective means
µ1, . . . , µK ). Notations: µ∗ = maxi=1,...,K µi , ∆i = µ∗ − µi ,
∆ = mini :∆i>0 ∆i , c denotes an absolute numerical constant.

For each round t = 1, 2, . . . , n;
1 The player chooses an arm It ∈ {1, . . . ,K}.
2 The environment draws the reward Yt from νIt (and

independently from the past given It).

Goal: Maximize (in expectation) the cumulative rewards.
Equivalently we want to minimize the cumulative regret:

Rn = nµ∗ − E
n∑

t=1

Yt .
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Strategies based on optimism in face of uncertainty

Let Ti (t) be the number of times arm i has been selected up
to time t.
Let X̂i ,t be the empirical mean of arm i at time t (that is
based on Ti (t) rewards).
UCB (Upper Confidence Bound), Auer, Cesa-Bianchi, and
Fischer (2002):

It+1 = arg max
i∈{1,...,K}

X̂i ,t +

√
α log t

Ti (t)
.

MOSS (Minimax Optimal Stochastic Strategy), Audibert and
Bubeck (2009):

It+1 = arg max
i∈{1,...,K}

X̂i ,t +

√√√√max
(

log
(

n
KTi (t)

)
, 0
)

Ti (t)
.
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Regret bounds for UCB and MOSS

Theorem (Auer, Cesa-Bianchi, and Fischer (2002), Audibert,
Munos, and Szepesvári (2009), Bubeck (2010))

There exists f : (1/2,+∞)→ R such that UCB with α > 1/2
satisfies for any n ≥ K ≥ 2:

Rn ≤
∑

i :∆i>0

4α

∆i
log(n) + Kf (α), and Rn ≤

√
nK (4α log(n) + f (α)).

Theorem

MOSS satisfies:

Rn ≤
cK

∆
log(n), and Rn ≤ c

√
nK .
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Pure exploration bandit game, joint work with Jean-Yves
Audibert, Rémi Munos and Gilles Stoltz

Classical bandit game for n rounds. Then the player outputs a
recommendation Jn ∈ {1, . . . ,K}.
Goal: Maximize the expected reward of the recommended arm.
We consider the regret rn = µ∗ − EµJn .

Theorem

inf
player’s strategy

sup
ν

rn = Θ

(√
K

n

)
.

Here we focus on the speed of convergence (to 0) of rn as a
function of ν.
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Uniform strategy

For each i ∈ {1, . . . ,K}, select arm i during bn/Kc rounds.
Recommend the arm with highest empirical mean.

Theorem

The uniform strategy satisfies:

rn ≤ K exp

(
−c

n∆2

K

)
.

Informally, the uniform strategy needs (of order of) K/∆2 rounds
to have a small regret. Can we do better ?
Assume that there exists a unique optimal arm i∗, then we have
strategies that require only H =

∑
i 6=i∗ 1/∆2

i rounds to have a
small regret.
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The smaller Rn the larger rn !

Theorem

Consider any strategy and let ε : N→ R be such that for all
(Bernoulli) distributions ν1, . . . , νK on the rewards, we have

Rn ≤ cε(n),

then for all sets of K ≥ 3 (distinct, Bernoulli) distributions on the
rewards, all different from a Dirac distribution at 1, up to a
permutation of the arms we have,

rn ≥ ∆ exp(−cε(n)) .
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Successive Rejects (SR)

Let A1 = {1, . . . ,K}.

For each phase k = 1, 2, . . . ,K − 1:

(1) For each i ∈ Ak , select arm i during nk rounds.

(2) Let Ak+1 = Ak \ {j}, where j is the arm in Ak with the
smallest empirical mean.

Let Jn be the unique element of AK .

Theorem

SR satisfies (for well chosen (nk)):

rn ≤ K 2 exp

(
−c

n

log(K )H

)
.
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Sébastien Bubeck Bandits Games



Multi-Armed Bandits
Pure Exploration in Multi-Armed Bandits

Continuously-Armed Bandits
Adversarial Multi-Armed Bandits

References

Successive Rejects (SR)

Let A1 = {1, . . . ,K}.

For each phase k = 1, 2, . . . ,K − 1:
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Lower bound

Theorem

Let ν1, . . . , νK be Bernoulli distributions with parameters in
[1/3, 2/3] (and a unique optimal arm). Then, for any strategy, up
to a permutation of the arms,

rn ≥ ∆ exp

(
−c

n log(K )

H

)
.

Informally, any algorithm requires at least (of order of) H/ log(K )
rounds to have a small regret (and recall that SR has a small
regret with log(K )H rounds).
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X -armed bandit game, joint work with Rémi Munos, Gilles
Stoltz and Csaba Szepesvari

Classical bandit game where the set of arms {1, . . . ,K} is replaced
by an arbitrary set X .

Theorem

Let X be a compact subset of RD and F be the set of bandits
problems such that the mean-payoff function is 1-Lipschitz (with
respect to some norm). Then we have

inf
player’s strategy

sup
F

Rn = Θ̃
(

n
D+1
D+2

)
.

Can we avoid the exponential dependence on the dimension ?
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Near-optimality dimension

Let ` be a dissimilarity measure, that is, a non-negative mapping
` : X 2 → R satisfying `(x , x) = 0.

Definition

Let f : X → [0, 1], Xε = {x ∈ X , sup f − f (x) ≤ ε} and P(Xε, `, ε)
be the packing number of X with `-open balls of radius ε. The
near-optimality dimension of f is defined as
d(f ) = lim supε→0

logP(Xε,`,ε)
log ε−1 .

Example

Let X = [0, 1]D and ` be some norm || · ||. Then f (x) = ||x ||
satisfies d(f ) = 0 and g(x) = ||x ||2 satisfies d(g) = D/2.
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Regret bounds with near-optimality dimension

Theorem (Kleinberg, Slivkins, and Upfal (2008))

Let X be a compact metric space (with metric `). Consider a
bandit problem such that the mean-payoff is 1-Lipschitz and has a
near-optimality dimension d ≥ 0 (with respect to `). Then the

Zooming algorithm satisfies Rn = Õ
(

n
d+1
d+2

)
.

Theorem

Let ` be any dissimilarity and consider a bandit problem such that
the mean-payoff is weakly-Lipschitz and has a near-optimality
dimension d ≥ 0 (with respect to `). Then HOO satisfies (under

mild ’compactness’ assumption on X ) Rn = Õ
(

n
d+1
d+2

)
.
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Example

X = [0, 1]D , α ≥ 0 and mean-payoff function f locally ”α-smooth”
around (any of) its maximum x∗ (in finite number):

f (x∗)− f (x) = Θ(||x − x∗||α) as x → x∗.

Theorem

Assume that we run HOO using `(x , y) = ||x − y ||β.

Known smoothness: β = α. Rn = Õ(
√

n), i.e., the rate is
independent of the dimension D.

Smoothness underestimated: β < α.

Rn = Õ(n(d+1)/(d+2)) where d = D
(

1
β −

1
α

)
.

Smoothness overestimated: β > α. No guarantee. Note:
UCT corresponds to β = +∞.
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Adversarial multi-armed bandit game, joint work with
Jean-Yves Audibert

For each round t = 1, 2, . . . , n;

1 The player chooses an arm It ∈ {1, . . . ,K}, possibly with the
help of an external randomization.

2 Simultaneously the adversary chooses a gain vector
gt = (g1,t , . . . , gK ,t) ∈ [0, 1]K .

3 The player receives (and observes) the gain gIt ,t .

Goal: Maximize the cumulative gains obtained. We consider the
regret:

Rn = max
i=1,...,K

E
n∑

t=1

gi ,t − E
n∑

t=1

gIt ,t .
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Known results

Theorem (Auer, Cesa-Bianchi, Freund, and Schapire (1995))

For any strategy,

sup Rn ≥
1

20

√
nK .

Moreover Exp3 satisfies:

Rn ≤
√

2nK log K .

We propose a new strategy, INF, which satisfies Rn ≤ 8
√

nK .

Due to time constraints, we skip all the interesting extensions:
label efficient games, high probability bounds, tracking the best
expert bounds, bounds that scale with the optimal arm rewards.
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Sébastien Bubeck Bandits Games



Multi-Armed Bandits
Pure Exploration in Multi-Armed Bandits

Continuously-Armed Bandits
Adversarial Multi-Armed Bandits

References

INF (Implicitly Normalized Forecaster)

Parameter: function ψ : R∗− → R∗+ increasing, convex, twice
continuously differentiable, and such that (0, 1] ⊂ ψ(R∗−).

Let p1 be the uniform distribution over {1, . . . ,K}.

For each round t = 1, 2, . . . , n;

1 It ∼ pt .

2 Compute g̃i ,t =
gi,t

pi,t
1It=i and G̃i ,t =

∑t
s=1 g̃i ,s .

3 Compute the new probability distribution:

pi ,t+1 = ψ(G̃i ,t − Ct)

where Ct is the unique real number such that∑K
i=1 pi ,t+1 = 1.
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Examples

1 ψ(x) = exp(ηx) + γ
K with η > 0 and γ ∈ [0, 1); this

corresponds exactly to the Exp3 strategy.

2 ψ(x) =
(
η
−x

)q
+ γ

K with q > 1, η > 0 and γ ∈ [0, 1); this is a

new strategy which will be proved to be minimax optimal for
appropriate parameters.
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Regret bound for Poly INF

Theorem

Consider ψ(x) =
( η
−x

)q
+ γ

K with γ = min
(

1
2 ,
√

3K
n

)
, η =

√
5n

and q = 2. Then INF satisfies:

Rn ≤ 8
√

nK .

Sébastien Bubeck Bandits Games



Multi-Armed Bandits
Pure Exploration in Multi-Armed Bandits

Continuously-Armed Bandits
Adversarial Multi-Armed Bandits

References

Proof

By an Abel transform we shift the focus from:

n∑
t=1

gIt ,t =
n∑

t=1

K∑
i=1

pi ,t(G̃i ,t − G̃i ,t−1)

to
n−1∑
t=1

K∑
i=1

G̃i ,t(pi ,t+1 − pi ,t) =
K∑

i=1

n−1∑
t=1

ψ−1(pi ,t+1)(pi ,t+1 − pi ,t).

Then a Taylor expansion gives us:

(pi ,t+1 − pi ,t)ψ−1(pi ,t+1) = −
∫ pi,t

pi,t+1

ψ−1(u)du +
(pi ,t − pi ,t+1)2

2ψ′(ψ−1(p̃i ,t+1))
.

The first resulting term: −
∑K

i=1

∫ 1/K
pi,n+1

ψ−1(u)du is easy to

control. On the other hand for the second term we need to do a
multivariate Taylor expansion on

pi ,t − pi ,t+1 = ψ(G̃i ,t − Ct)− ψ(G̃i ,t+1 − Ct+1)

as well as a careful treatment of the ”shift” introduced by p̃i ,t+1.
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Perspectives

The possible extensions of classical bandits games are almost
unlimited. The following cases are of special interest (to me).

Exploiting the combinatorial structure in linear bandits.

Specific forms of dependency between the arms for stochastic
bandits.

Mortal bandits: set of arms varying over time.
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