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Framework

Pure exploration bandit game

Parameters available to the forecaster: the number of rounds n
and the number of arms K.
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Framework

Pure exploration bandit game

Parameters available to the forecaster: the number of rounds n
and the number of arms K.

Parameters unknown to the forecaster: the reward distributions
(over [0,1]) v1,..., vk of the arms. We assume that there is a
unique arm /* with maximal mean.

For each round t =1,2,...,n;

@ The forecaster chooses an arm /; € {1,... K}.
@ The environment draws the reward Y; from v, (and
independently from the past given /;).
At the end of the n rounds the forecaster outputs a
recommendation J, € {1,..., K}.
Goal: Find the best arm, i.e, the arm with maximal mean. We
denote

en = P(J, 2 i*).
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Framework

Motivating examples

@ Clinical trials for cosmetic products. During the test phase,
several several formulae for a cream are sequentially tested,
and after a finite time one is chosen for commercialization.
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Framework

Motivating examples

@ Clinical trials for cosmetic products. During the test phase,
several several formulae for a cream are sequentially tested,
and after a finite time one is chosen for commercialization.

@ Channel allocation for mobile phone communications.
Cellphones can explore the set of channels to find the best
one to operate. Each evaluation of a channel is noisy and
there is a limited number of evaluations before the
communication starts on the chosen channel.
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Framework

Summary of the talk

@ Let i; be the mean of v;, and A; = puj+ — p; the
suboptimality of arm /.
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@ Main theoretical result: it requires of order of
H=3 4 1/A? rounds to find the best arm. Note that this
result is well known for K = 2.
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Framework

Summary of the talk

@ Let i; be the mean of v;, and A; = puj+ — p; the
suboptimality of arm /.

@ Main theoretical result: it requires of order of
H=3 4 1/A? rounds to find the best arm. Note that this
result is well known for K = 2.

@ We present two new forecasters, Successive Rejects (SR)
and Adaptive UCB-E (Upper Confidence Bound
Exploration).

@ SR is parameter free, and has optimal guarantees (up to a
logarithmic factor).

o Adaptive UCB-E has no theoretical guarantees but it
experimentally outperforms SR.
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Lower Bound

Lower Bound

Theorem

Let v1,...,vKk be Bernoulli distributions with parameters in
[1/3,2/3]. For any forecaster, there exists a numerical constant
c > 0 such that, up to a permutation of the arms,

€n = exp (—c

Informally, any algorithm requires at least (of order of) H/log(K)
rounds to find the best arm.
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Algorithms

Uniform strategy

For each i € {1,..., K}, select arm / during |n/K| rounds.
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% .

en < exp (—c
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Algorithms

Uniform strategy

For each i € {1,..., K}, select arm / during |n/K| rounds.

There exists a numerical constant ¢ > 0 such that the uniform
strategy satisfies:

nmin,-A,2
en < exp —CT .

Informally, the uniform strategy finds the best arm with (of order

of) K/ min; A? rounds. For large K, this can be significantly larger
than H = Z,-;é,-* 1/A2.
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Algorithms

Successive Rejects (SR)
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Successive Rejects (SR)

Letlog( ) %JFZ, 2:’A1_{1 ..... K} ng = 0 and
M= [t ke | for k€ {1, K =1},
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Algorithms

Successive Rejects (SR)

Let log(K) = 2+Z, »+ Ar={1,...,K}, no =0 and
nk:[log}K)K+1 o] for ke {l,...,K—1}.
For each phase k =1,2,... . K — 1:
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Algorithms

Successive Rejects (SR)

Let log(K) = 2+Z, »+ Ar={1,...,K}, no =0 and

M = [ b’ | for k€ {1,..., K —1}.

For each phase k =1,2,... . K — 1:

(1) For each i € Ay, select arm i during ny — ng_1 rounds.

(2) Let Axq1 = Ak \ argminjea, )A<,-,,,k, where )A<,-75 represents the
empirical mean of arm / after s pulls.

Let J, be the unique element of Ak.

There exists a numerical constant ¢ > 0 such that SR satisfies:

n
< —CcC——— .
p( Clog(K)H>
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Algorithms

Parameter: exploration rate ¢ > 0.
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Parameter: exploration rate ¢ > 0.

represents the number of times we selected arm / up to time t.
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Algorithms

Parameter: exploration rate ¢ > 0.

represents the number of times we selected arm / up to time t.

For each round t =1,2,... n:

Draw /t c argmax,-e{lau_’K} B,‘ﬁtf]_.
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Algorithms

Parameter: exploration rate ¢ > 0.

represents the number of times we selected arm / up to time t.

For each round t =1,2,... n:

Draw /t c argmax,-e{lau_’K} B[’tfl.

For ¢ small enough, there exists a numerical constant ¢’ > 0 such
that UCB-E satisfies e, < exp (—c'n/H).
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Algorithms

Parameter: exploration rate ¢ > 0.

represents the number of times we selected arm / up to time t.

For each round t =1,2,... n:

Draw /t c argmax,-e{lau_’K} B[’tfl.

For ¢ small enough, there exists a numerical constant ¢’ > 0 such
that UCB-E satisfies e, < exp (—c'n/H).

UCB-E finds the best arm with (of order of) H rounds, but it
requires the knowledge of H.
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Algorithms

Adaptive UCB-E

Parameter: exploration rate ¢ > 0.

Jean-Yves Audibert & Sébastien Bubeck & Rémi Munos Best Arm Identification in Multi-Armed Bandits



Algorithms

Adaptive UCB-E

Parameter: exploration rate ¢ > 0.

Definitions: For k € {1,..., K — 1}, let ny = (ﬁ%]
to =0, t1 = Knq, and for k > 1,

tk:n1+...nk,1+(K—k+1)nk.
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Algorithms

Adaptive UCB-E

Parameter: exploration rate ¢ > 0.
Definitions: For k € {1,..., K — 1}, let nj = (%ﬂ]

og(K) K+1-k
to =0, t1 = Kny, and fork>1
te=n1+...0k_ 1+(K—k—|—1 nk Forie {1,...,K} and

a>0,let Bi:(a) =Xty ++/F15 y for t > 1.
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Algorithms

Adaptive UCB-E

Parameter: exploration rate ¢ > 0.

Definitions: For k € {1,..., K — 1}, let nj = (ﬁ%]
to =0, t1 = Knq, and for k > 1,
te=n1+...0k_ 1+(K—k—|—1nk Forie {1,...,K} and

a>0,let Bi:(a) =Xty ++/F15 y for t > 1.

Algorithm: For each phase k =0,1,... ., K — L
Let Hk K if k =0, and otherwise Hk = MaXK—k+1<i<K /A<,> Py

where Ai,k = (max1 <KX (tk)) Xi,T,-(tk) and < /> isan

ordering such that A<1>7k <...< A<K>7k.
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Algorithms

Adaptive UCB-E

Parameter: exploration rate ¢ > 0.

Definitions: For k € {1,... K — 1}, Ietnk:(ﬁ%],
to =0, t1 = Knq, and for k > 1,
tk =n1 4 ...nk_ 1+(K—k+1 nk Forie {1,...,K} and

a>0,|etB;,t()— Tt/ fort = 1.

Algorithm: For each phase k =0,1,... ., K — L

Let Hk K if k =0, and otherwise Hk = MaXK—k+1<i<K /A<,> Py
where Ai,k = (max1 <KX Ti(t )) — Xi,T,-(tk) and </ > is an

ordering such that A<1>7k <. <Ak ke

Fort =t,+1,...,txr1: Draw
Iy € argmaxicy . ky Bie—1(c n/Hy).
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Experiments

Experiments

@ Experiment 5: Arithmetic progression, K = 15,
pi =0.5—0.025/, i € {2,...,15}.

@ Experiment 7: Three groups of bad arms, K = 30,
H2:6 = 045, HU7:20 = 043, M21:30 = 0.38.

Experiment 5, n=4000 Experiment 7, n=6000

10-14 : Ad UCB-E

Probability of error
Probability of error

1 2 3 4 5 6 7 8 9 10 11 12 13 14 12 3 4 5 6 7 8 9 10 11 12 13 14
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Conclusion

Conclusion

@ It requires at least H/ log(K) rounds to find the best arm.

@ SR is a parameter free algorithm, it requires less than
Hlog(K') rounds to find the best arm.

@ UCB-E requires only H rounds but also the knowledge of H to
tune i1ts parameter.

o Adaptive UCB-E does not have theoretical guarantees but it
experimentally outperforms SR.
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