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Online Linear Optimization with Bandit Feedback

Parameters available to the player: number of rounds n, action
set A ⊂ Rd , action set of the adversary Z ⊂ Rd .

At each round t = 1, 2, . . . , n;

1 Player chooses an action at ∈ A.

2 Simultaneously the adversary chooses an action zt ∈ Z.

3 The player incurs and observes the loss a>t zt .

Goal: Minimize the cumulative (pseudo) regret

Rn = E
n∑

t=1

a>t zt −min
a∈A

E
n∑

t=1

a>zt .
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Minimax policies
We are interested in

sup
A,Z

inf
strategy

sup
adversary

Rn,

where the first sup is taken over a suitable class of sets A and Z.
This problem was introduced in McMahan and Blum (2004) and
Awerbuch and Kleinberg (2004).

Our goal is to obtain the exact dependency in (n, d) (eventually up
to log factors) in the above quantity under the following
assumptions:

Assumption

Z is included in the polar of A, that is |a>z | ≤ 1, ∀(a, z) ∈ A×Z.
A is bounded and it has a non-empty interior.

Two known algorithms for this task: Exponential weights or Mirror
Descent (Nemirovski and Yudin, (1983)). One common difficulty
for both methods: how to do an ’optimal’ exploration of A?
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Expanded Exponentially weighted average forecaster
(Exp2)

Key observation: if at is played at random from some probability
distribution pt ∈ ∆(A) (with pt(a) > 0,∀a ∈ A) then one can
build an unbiased estimate z̃t of the adversary’s move zt :
z̃t = P−1t ata

>
t zt , with Pt = Ea∼pt (aa

>).

Assume that A is finite. The Exp2 strategy defines the probability
distribution pt with exponential weights, mixed with some
exploration distribution µ ∈ ∆(A),

pt(a) = (1− γ)
exp

(
−η
∑t−1

s=1 z̃
>
s a
)

∑
b∈A exp

(
−η
∑t−1

s=1 z̃
>
s b
) + γµ.
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The exploration distribution

Dani, Hayes and Kakade (2008) used a barycentric spanner
for µ and obtained a regret of order d

√
n log |A|. Moreover

they show that without further assumptions a regret of order√
dn log |A| is unimprovable (it is tight for A = {−1, 1}d).

Cesa-Bianchi and Lugosi (2009) used a uniform distribution
for µ and obtained for a few specific sets A a regret of order√
dn log |A|.

We propose a new distribution, based on John’s Theorem
from convex geometry, and obtain a regret of order√
dn log |A| for any finite set A.

By a discretization argument this also gives a regret of order
d
√
n log n for any convex body A.
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John’s distribution

Theorem (John’s Theorem)

Let K ⊂ Rd be a convex set. If the ellipsoid E of minimal volume
enclosing K is the unit ball in some norm derived from a scalar
product 〈·, ·〉, then there exists M ≤ d(d + 1)/2 + 1 contact points
u1, . . . , uM between E and K, and µ ∈ ∆M (the simplex of
dimension M − 1), such that

x = d
M∑
i=1

µi 〈x , ui 〉ui ,∀ x ∈ Rd .



A few natural questions

1 What about computationally efficient strategies? Abernethy,
Hazan and Rakhlin (2008) use Mirror Descent and obtain a
regret of order d

√
θn log n for any θ > 0 such that Conv(A)

admits a θ-self concordant barrier (i.e., a suboptimal
d3/2
√
n log n regret in the worst case).

2 What about optimal regret for specific sets A? A modification
of the Mirror Descent strategy described in Abernethy and
Rakhlin (2009) attains a regret of order

√
dn log n for the

Euclidean ball (we provide an alternative strategy and proof
for this result).

3 What about the combinatorial setting where Z = [−1, 1]d

(i.e., Z is not the polar of A). It was proved in Audibert,
Bubeck and Lugosi (2011) that in this setting the Exp2
strategy is provably suboptimal by a factor

√
d (in the full

information setting). In full information (Koolen, Warmuth
and Kivinen [2010]) and semi-bandit (ABL11) the key to
optimal regret bound is again the Mirror Descent algorithm.
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Online Stochastic Mirror Descent (OSMD)

Parameter: F Legendre on D ⊃ Conv(A)

Conv(A)

D

∆(A)

(1) w ′t+1 ∈ D :
w ′t+1 = ∇F ∗ (∇F (wt)− z̃t)

(2) wt+1 ∈ argmin
w∈Conv(A)

DF (w ,w ′t+1)

(3) pt+1 ∈ ∆(A) : wt+1 = Ea∼pt+1a
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An optimal and computationally efficient strategy for the
hypercube

We consider here the set A = {−1, 1}d and we use OSMD with an
INF type regularizer, Audibert and Bubeck [2009],

F (x) =
d∑

i=1

∫ xi

−1
tanh−1(s)ds

=
1

2

d∑
i=1

(
(1 + xi ) log(1 + xi ) + (1− xi ) log(1− xi )

)
+ cst.

We choose a very specific distribution pt to play (approximately)
a point wt ∈ Conv(A) = [−1, 1]d :

With probability γ, play at uniformly at random from the
canonical basis (with random sign). With probability
1− γ, play at = ξt where ξt(i) is drawn from a

Rademacher with parameter 1+wt(i)
2 .

This strategy has a computational complexity linear in d , and
it attains the optimal d

√
n regret on the hypercube.
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