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Framework

Bandit game

Parameters: the number of arms (or actions) K and the number
of rounds n.
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Framework

Bandit game

Parameters: the number of arms (or actions) K and the number

of rounds n.
For each round t =1,2,...,n
@ The forecaster chooses an arm /; € {1,..., K}, possibly with

the help of an external randomization.

@ Simultaneously the adversary chooses a gain vector
8t = (g]_ Eyovns , 8K. t) € [O 1]K
© The forecaster receives (and observes) the gain g, ;.

Goal: Maximize the cumulative gains obtained. We consider the

regret:
R, = max EZg, " —EZg/t
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Framework

Stochastic and adversial settings

o Adversarial setting: The adversary can freely choose the gain
vector at each time step, that is the adversary is non-oblivious.
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Framework

Stochastic and adversial settings

o Adversarial setting: The adversary can freely choose the gain
vector at each time step, that is the adversary is non-oblivious.

@ Stochastic setting: The adversary samples the gain vector
from an unknown product distribution (v1,...,vk) on [0,1]%,
that is 8it ~ V.
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Framework

Known results

@ Lower bound: For both settings and for any strategy,
sup Ry, > 55V/nK, [Auer et al. 02a].
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o Adversarial setting: Exp3 satisfies R, < \/2nK log K, [Auer
et al. 02a].
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o Adversarial setting: Exp3 satisfies R, < \/2nK log K, [Auer
et al. 02a].

@ Stochastic setting: UCB satisfies R, < /10nK log n
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Framework

Known results

@ Lower bound: For both settings and for any strategy,
sup Ry, > 55V/nK, [Auer et al. 02a].

o Adversarial setting: Exp3 satisfies R, < \/2nK log K, [Auer
et al. 02a].

@ Stochastic setting: UCB satisfies R, < /10nK log n and
R, <10 Z,:Ai>0 % log n where A; is the difference between
the mean of the best arm and the mean of arm i, [Auer et al.
02b].
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The MOSS strategy

MOSS (Minimax Optimal Strategy in the Stochastic
setting)

e T;(t) = the number of pulls of arm i up to time t.
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MOSS (Minimax Optimal Strategy in the Stochastic
setting)

e T;(t) = the number of pulls of arm i up to time t.

° )?,-\yt = the empirical mean estimate of arm i at time t (that is
based on T;(t) pulls).

e Classical UCB:

S 2logt
Iy = Xit— —_— .
ET AR I et + \/ T:(t—1)
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The MOSS strategy

MOSS (Minimax Optimal Strategy in the Stochastic
setting)

e T;(t) = the number of pulls of arm i up to time t.

° )?,-\yt = the empirical mean estimate of arm i at time t (that is
based on T;(t) pulls).

e Classical UCB:

S 2logt

Iy = Xi ¢ - .
t argie{T?.),(K} -1t Ti(t—1)

e MOSS:

R max(log (ﬁ) ,O)
Iy =arg max Xj; 1+ (1) .

i€l K} Ti(t—1)
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The MOSS strategy

Regret bound for MOSS

In the stochastic setting MOSS satisfies R, < 49v/ nK.
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The MOSS strategy

Regret bound for MOSS

In the stochastic setting MOSS satisfies R, < 49v/ nK.

In the stochastic setting MOSS satisfies

Ri< 23K Y e <|Og (nﬁ%) ’1).

. A;
i:A;>0
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The INF strategy

INF (Implicitly Normalized Forecaster)

Parameter: function ¢) : R* — RR" increasing, convex, twice
continuously differentiable, and such that

lim 9(x) <1/K, and Iimoz/)(x) > 1.
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INF (Implicitly Normalized Forecaster)

Parameter: function ¢) : R* — RR" increasing, convex, twice
continuously differentiable, and such that

lim 9(x) <1/K, and Iimoz/)(x) > 1.

Let p; be the uniform distribution over {1,..., K}.

For each round t =1,2,...,
Q /i~ p:.
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INF (Implicitly Normalized Forecaster)

Parameter: function ¢) : R* — RR" increasing, convex, twice
continuously differentiable, and such that

lim 9(x) <1/K, and Iimoz/)(x) > 1.

Let p; be the uniform distribution over {1,..., K}.

For each round t =1,2,...,
Q /i~ p:.
@ Compute g+ = i:%t]l,t:,- and G;; = 22:1 8is.
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The INF strategy

INF (Implicitly Normalized Forecaster)

Parameter: function ¢) : R* — RR" increasing, convex, twice
continuously differentiable, and such that

lim 9(x) <1/K, and Iimoz/)(x) > 1.

Let p; be the uniform distribution over {1,..., K}.
For each round t =1,2,...,
Q It~ p:.
@ Compute g+ = i:%t]l,t:,- and C,;t = 22:1 8is.
© Compute the new probability distribution:

Pit+1 = ﬂ)(@i,t - Ct)

where C; is the unique real number such that
K
Zl:l p/~t+l - 1'
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The INF strategy

Examples

Q@ (x) = exp(nx) + % with 7 > 0 and v € [0, 1); this
corresponds exactly to the EXP3 strategy.
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The INF strategy

Examples

Q@ (x) = exp(nx) + % with 7 > 0 and v € [0, 1); this
corresponds exactly to the EXP3 strategy.

@ (x)=(2)"+ L withq>1,7>0and v € [0,1); thisis a
new forecaster which will be proved to be minimax optimal for
appropriate parameters.
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The INF strategy

Regret bound for INF

For any real q > 1, the Implicitly Normalized Forecaster with
) 1 (9y/gnK\? q/(29—2) .
P(x) = 7% ( — ) + &= satisfies

nK

37
Ry < —2t\/qnK.
"=1-1/qV "
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The INF strategy

Regret bound for INF

For any real q > 1, the Implicitly Normalized Forecaster with

) _ 1 (9/qnK 9 qa/a-2) .
(x) = K( — ) = satisfies

37
Ry < —2t\/qnK.
"=1-1/qV "

In particular for g = 3 we get R, < 100v/nK.
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The INF strategy

By an Abel transform we shift the focus from:

Zgltt_zzplt - @i,t—l)

t=1 j=1
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The INF strategy

By an Abel transform we shift the focus from:

Zgltt_zzplt - @i,t—l)

t=1 j=1
to
n—-1 K K n—1
S Gielpierr—pie) =D > U pier1) (s — pie).
=1 i=1 i=1 t=1

Jean-Yves Audibert & Sébastien Bubeck Minimax Policies for Prediction games



The INF strategy

By an Abel transform we shift the focus from:

n n K
Zglr.t: Zpi,t(éhrféi,r—l)
t=1 t=1i=1
to
n—1 K K n—1
Gi,t(Pi,t+1 - pi,t) = Z Zwil(pi,t—s—l)(pht—&-l - pi,t)-
t=1 j=1 i=1 t=1

Then a Taylor expansion gives us:

*Pi,t ( P 2
1 -1 Pit p/.t+1)
Pit+1 = Pit)Y (Pits1 —_/ Y (u)du+ o :
( i t+ i t) ( I,t+ ) P ( ) 2/1/)/(15} 1(Pi.t+1))
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The INF strategy

By an Abel transform we shift the focus from:
n n K
STee=>.> pie(Gie — Giio1)
t=1 t=1 j=1

to

n—1 K K n—1

Z Z éi,t(Pi,H»l = Pi,t) = Z Z v P/ 1) (PiLe+1 — Pit)-

t=1 i=1 i=1 t=1
Then a Taylor expansion gives u

Pt (it — Pit1)?
(Pist+1 — Pie)V " (Pie+1) (u)du + e .
I " " < Pi t+1 2w/(7/) 1(plt+1))

The first resulting term: — Z,K:1 pl_/il Y~ (u)du is easy to

control.
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The INF strategy

By an Abel transform we shift the focus from:

n

n K
STee=>.> pie(Gie — Giio1)
p

t=1 j=1

to

n—1 K K n—1
Z Z Gi,e(Pi,t+1 — Pit) = Z Z v P/ 1) (PiLe+1 — Pit)-
t=1 i=1 i=1 t=1

Then a Taylor expansion gives u

Pit (pit — Pit+1)?
S Y- 1 u)du + : - .
(Pie+1 — Pie)  (Pie+1) oo 20" (Yp=1(Pit+1))

The first resulting term: — Z,K:1 pl_/’; Y~ (u)du is easy to

control. On the other hand for the second term we need to do a
multivariate Taylor expansion on

pi.t — Pit+1 = Y(Git — Ct) — Y(Giry1 — Ceg1)
as well as a careful treatment of the "shift” introduced by p; +11.
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The INF strategy

Other notions of regret

@ In this work we considered

R,= m
-

!

However ultimately we want to control
max; » p_q1 &i.t — 2 r—1 &l,.+ With high probability as well as
Emax; > 11 gt —E3 71 8-
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Other notions of regret

@ In this work we considered

R,= m
-

!

However ultimately we want to control
max; » p_q1 &i.t — 2 r—1 &l,.+ With high probability as well as
Emax; > 11 gt —E3 71 8-

@ In fact if the adversary is oblivious then

n n
nlog K
Emiax;g,-,t — miaxEtz;ght < ,
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The INF strategy

Other notions of regret

@ In this work we considered

R,= m
n i1

!

However ultimately we want to control
max; » p_q1 &i.t — 2 r—1 &l,.+ With high probability as well as
Emax;i 327 1 8ie —E3 201 8-

@ In fact if the adversary is oblivious then

n n
nlog K
Emiaxtz;g,-,t — miaxEtz;ght < ,

. ~ i tli—p,+0
© For non-oblivious adversary we set gj; = g"t[;%. Then
, )

high probability bounds on max; >~} gi+ — > 1 &, follow
as well as bounds on this quantity in expectation.
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The INF strategy

Extensions of INF to other games

© The INF forecaster can be generalized to work in the classical
full information game and the label efficient game (with
bandit or full information).
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The INF strategy

Extensions of INF to other games

© The INF forecaster can be generalized to work in the classical
full information game and the label efficient game (with
bandit or full information).

@ One can also compute bounds on the regret in a "tracking the
best expert” setting, that is we compare ourselves to a
strategy allowed to switch S times between different arms (in
this talk we considered the case S = 0).
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The INF strategy

Extensions of INF to other games

© The INF forecaster can be generalized to work in the classical
full information game and the label efficient game (with
bandit or full information).

@ One can also compute bounds on the regret in a "tracking the
best expert” setting, that is we compare ourselves to a
strategy allowed to switch S times between different arms (in
this talk we considered the case S = 0).

© All the proofs follow the same scheme !

Jean-Yves Audibert & Sébastien Bubeck Minimax Policies for Prediction games



The INF strategy

Summary

max; E>"7_ 1 (8ie — &1.t) | Emax; > or_; (8ie — &t)
L.B. U.B. L.B. U.B.

Full Information

Label Efficient F.I.

Oblivious Bandit v nK v nK v nK v nK
Non-Oblivious Bandit V nK V nK

Label Efficient Bandit

Tracking the Best Expert
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Summary

The INF strategy

max; E>"7_; (8.t — &.t)

Emax; Y71 (g1t — &1,.¢)

L.B. U.B.

L.B.

U.B.

Full Information

Vnlog K Vnlog K

Vnlog K

Vnlog K

Label Efficient F.I.

log K log K
0y | oL

log K
ny/ 2K

n\/logK
m

Oblivious Bandit

VK | VK

VnK

Non-Oblivious Bandit v nK VnK ? nKlog K
Label Efficient Bandit ? n\/E ? n\/m
m m
?

Tracking the Best Expert

? \/nKS log %

\/nKS log %
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