Bandit View on Continuous Stochastic Optimization

Sébastien Bubeck¹

joint work with Rémi Munos¹ & Gilles Stoltz² & Csaba Szepesvari³

¹ INRIA Lille, SequeL team

² CNRS/ENS/HEC

³ University of Alberta

Parameters available to the forecaster: the number of rounds n and the set of arms \mathcal{X} .

Parameters unknown to the forecaster: mean-payoff function $f: \mathcal{X} \to [0,1]$, reward distributions (over [0,1]) M(x) such that f(x) is the expectation of M(x).

For each round $t = 1, 2, \ldots, n$

- ① The player chooses an arm $X_t \in \mathcal{X}$.
- ② The environment draws the reward Y_t from $M(X_t)$ (and independently from the past given X_t).

$$R_n = \mathbb{E} \sum_{t=1}^n \left(\max_{x \in \mathcal{X}} f(x) - Y_t \right).$$

Parameters available to the forecaster: the number of rounds n and the set of arms \mathcal{X} .

Parameters unknown to the forecaster: mean-payoff function $f: \mathcal{X} \to [0,1]$, reward distributions (over [0,1]) M(x) such that f(x) is the expectation of M(x).

For each round $t = 1, 2, \ldots, n$;

- ① The player chooses an arm $X_t \in \mathcal{X}$.
- ② The environment draws the reward Y_t from $M(X_t)$ (and independently from the past given X_t).

$$R_n = \mathbb{E} \sum_{t=1}^n \left(\max_{x \in \mathcal{X}} f(x) - Y_t \right).$$

Parameters available to the forecaster: the number of rounds n and the set of arms \mathcal{X} .

Parameters unknown to the forecaster: mean-payoff function $f: \mathcal{X} \to [0,1]$, reward distributions (over [0,1]) M(x) such that f(x) is the expectation of M(x).

For each round $t = 1, 2, \ldots, n$;

- ① The player chooses an arm $X_t \in \mathcal{X}$.
- ② The environment draws the reward Y_t from $M(X_t)$ (and independently from the past given X_t).

$$R_n = \mathbb{E} \sum_{t=1}^n \left(\max_{x \in \mathcal{X}} f(x) - Y_t \right)$$

Parameters available to the forecaster: the number of rounds n and the set of arms \mathcal{X} .

Parameters unknown to the forecaster: mean-payoff function $f: \mathcal{X} \to [0,1]$, reward distributions (over [0,1]) M(x) such that f(x) is the expectation of M(x).

For each round $t = 1, 2, \ldots, n$;

- **1** The player chooses an arm $X_t \in \mathcal{X}$.
- ② The environment draws the reward Y_t from $M(X_t)$ (and independently from the past given X_t).

$$R_n = \mathbb{E} \sum_{t=1}^n \left(\max_{x \in \mathcal{X}} f(x) - Y_t \right)$$

Parameters available to the forecaster: the number of rounds n and the set of arms \mathcal{X} .

Parameters unknown to the forecaster: mean-payoff function $f: \mathcal{X} \to [0,1]$, reward distributions (over [0,1]) M(x) such that f(x) is the expectation of M(x).

For each round $t = 1, 2, \ldots, n$;

- **1** The player chooses an arm $X_t \in \mathcal{X}$.
- ② The environment draws the reward Y_t from $M(X_t)$ (and independently from the past given X_t).

$$R_n = \mathbb{E} \sum_{t=1}^n \left(\max_{x \in \mathcal{X}} f(x) - Y_t \right)$$

Parameters available to the forecaster: the number of rounds n and the set of arms \mathcal{X} .

Parameters unknown to the forecaster: mean-payoff function $f: \mathcal{X} \to [0,1]$, reward distributions (over [0,1]) M(x) such that f(x) is the expectation of M(x).

For each round $t = 1, 2, \ldots, n$;

- **1** The player chooses an arm $X_t \in \mathcal{X}$.
- ② The environment draws the reward Y_t from $M(X_t)$ (and independently from the past given X_t).

$$R_n = \mathbb{E} \sum_{t=1}^n \left(\max_{x \in \mathcal{X}} f(x) - Y_t \right).$$

- Calibrating the temperature or levels of other inputs to a reaction so as to maximize the yield of a chemical process.
- Pricing a new product with uncertain demand in order to maximize revenue
- In general: online parameter tuning of numerical methods.
- Note: in the pricing problem different product lines could also be tested while tuning the price ⇒ hybrid continuous/discrete set of arms.

- Calibrating the temperature or levels of other inputs to a reaction so as to maximize the yield of a chemical process.
- Pricing a new product with uncertain demand in order to maximize revenue
- In general: online parameter tuning of numerical methods.
- Note: in the pricing problem different product lines could also be tested while tuning the price ⇒ hybrid continuous/discrete set of arms.

- Calibrating the temperature or levels of other inputs to a reaction so as to maximize the yield of a chemical process.
- Pricing a new product with uncertain demand in order to maximize revenue
- In general: online parameter tuning of numerical methods.
- Note: in the pricing problem different product lines could also be tested while tuning the price ⇒ hybrid continuous/discrete set of arms.

- Calibrating the temperature or levels of other inputs to a reaction so as to maximize the yield of a chemical process.
- Pricing a new product with uncertain demand in order to maximize revenue
- In general: online parameter tuning of numerical methods.
- Note: in the pricing problem different product lines could also be tested while tuning the price ⇒ hybrid continuous/discrete set of arms.

Summary of the talk

- We present a new strategy, Hierarchical Optimistic
 Optimization (HOO). It is based on a tree-representation of the search space, that we explore non-uniformly thanks to upper confidence bounds assigned to each nodes.
- Main theoretical result: if one knows the **local regularity** of the mean-payoff **function around its maximum**, then it is possible to obtain a cumulative regret of order \sqrt{n} .
- In particular, using n (noisy) evaluation of the function we can find the maximum at a precision $1/\sqrt{n}$, independently of the ambient dimension! Note that in a minimax sense, one can only find the maximum at a precision $n^{-1/(d+2)}$.

Summary of the talk

- We present a new strategy, Hierarchical Optimistic
 Optimization (HOO). It is based on a tree-representation of the search space, that we explore non-uniformly thanks to upper confidence bounds assigned to each nodes.
- Main theoretical result: if one knows the **local regularity** of the mean-payoff **function around its maximum**, then it is possible to obtain a cumulative regret of order \sqrt{n} .
- In particular, using n (noisy) evaluation of the function we can find the maximum at a precision $1/\sqrt{n}$, independently of the ambient dimension! Note that in a minimax sense, one can only find the maximum at a precision $n^{-1/(d+2)}$.

Summary of the talk

- We present a new strategy, Hierarchical Optimistic
 Optimization (HOO). It is based on a tree-representation of the search space, that we explore non-uniformly thanks to upper confidence bounds assigned to each nodes.
- Main theoretical result: if one knows the **local regularity** of the mean-payoff **function around its maximum**, then it is possible to obtain a cumulative regret of order \sqrt{n} .
- In particular, using n (noisy) evaluation of the function we can find the maximum at a precision $1/\sqrt{n}$, independently of the ambient dimension! Note that in a minimax sense, one can only find the maximum at a precision $n^{-1/(d+2)}$.

Local regularity around the maximum

Let ℓ be dissimilarity measure, that is, a non-negative mapping $\ell: \mathcal{X}^2 \to \mathbb{R}$ satisfying $\ell(x, x) = 0$.

```
Assumption (Weakly Lipschitz)
```

```
For all x \in \mathcal{X} and \epsilon \geq 0, if x \in \mathcal{X}_{\epsilon} = \{x \in \mathcal{X}, f^* - f(x) \leq \epsilon\} then for any y \in \mathcal{X}, f(x) - f(y) \leq \max(\epsilon, \ell(x, y)).
```

Local regularity around the maximum

Let ℓ be dissimilarity measure, that is, a non-negative mapping $\ell: \mathcal{X}^2 \to \mathbb{R}$ satisfying $\ell(x, x) = 0$.

Assumption (Weakly Lipschitz)

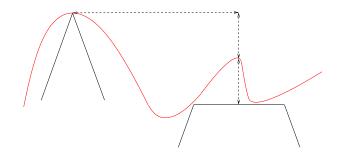
For all $x \in \mathcal{X}$ and $\epsilon \geq 0$, if $x \in \mathcal{X}_{\epsilon} = \{x \in \mathcal{X}, f^* - f(x) \leq \epsilon\}$ then for any $y \in \mathcal{X}$, $f(x) - f(y) \leq \max(\epsilon, \ell(x, y))$.

Local regularity around the maximum

Let ℓ be dissimilarity measure, that is, a non-negative mapping $\ell: \mathcal{X}^2 \to \mathbb{R}$ satisfying $\ell(x, x) = 0$.

Assumption (Weakly Lipschitz)

For all $x \in \mathcal{X}$ and $\epsilon \geq 0$, if $x \in \mathcal{X}_{\epsilon} = \{x \in \mathcal{X}, f^* - f(x) \leq \epsilon\}$ then for any $y \in \mathcal{X}$, $f(x) - f(y) \leq \max(\epsilon, \ell(x, y))$.



- HOO receives as input a sequence $(\mathcal{P}_{h,i})_{h\geq 0,\ 1\leq i\leq 2^h}$ of subsets of \mathcal{X} satisfying:
 - **1** $\mathcal{P}_{0,1} = \mathcal{X}$,

 - ③ $\exists \rho \in (0,1) : \operatorname{diam}(\mathcal{P}_{h,i}) \leq \rho^h \text{ where } \operatorname{diam}(\mathcal{P}_{h,i}) = \sup_{x,y \in \mathcal{P}_{h,i}} \ell(x,y).$
- We view this as a tree where node (h, i) (at depth h and position i) is associated to the domain $\mathcal{P}_{h,i}$.

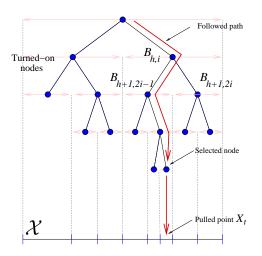
- HOO receives as input a sequence $(\mathcal{P}_{h,i})_{h\geq 0,\ 1\leq i\leq 2^h}$ of subsets of \mathcal{X} satisfying:
 - **1** $\mathcal{P}_{0,1} = \mathcal{X}$,
 - $P_{h,i} = \mathcal{P}_{h+1,2i-1} \cup \mathcal{P}_{h,2i}.$
 - 3 $\exists \rho \in (0,1) : \operatorname{diam}(\mathcal{P}_{h,i}) \leq \rho^h \text{ where } \operatorname{diam}(\mathcal{P}_{h,i}) = \sup_{x,y \in \mathcal{P}_{h,i}} \ell(x,y).$
- We view this as a tree where node (h, i) (at depth h and position i) is associated to the domain $\mathcal{P}_{h,i}$.

- HOO receives as input a sequence $(\mathcal{P}_{h,i})_{h\geq 0,\ 1\leq i\leq 2^h}$ of subsets of \mathcal{X} satisfying:
 - **1** $\mathcal{P}_{0,1} = \mathcal{X}$,
 - **2** $\mathcal{P}_{h,i} = \mathcal{P}_{h+1,2i-1} \cup \mathcal{P}_{h,2i}$.
 - ③ $\exists \rho \in (0,1) : \operatorname{diam}(\mathcal{P}_{h,i}) \leq \rho^h \text{ where } \operatorname{diam}(\mathcal{P}_{h,i}) = \sup_{x,y \in \mathcal{P}_{h,i}} \ell(x,y).$
- We view this as a tree where node (h, i) (at depth h and position i) is associated to the domain $\mathcal{P}_{h,i}$.

- HOO receives as input a sequence $(\mathcal{P}_{h,i})_{h\geq 0,\ 1\leq i\leq 2^h}$ of subsets of \mathcal{X} satisfying:
 - **1** $\mathcal{P}_{0,1} = \mathcal{X}$,
 - **2** $\mathcal{P}_{h,i} = \mathcal{P}_{h+1,2i-1} \cup \mathcal{P}_{h,2i}$.
 - ③ $\exists \rho \in (0,1) : \operatorname{diam}(\mathcal{P}_{h,i}) \leq \rho^h \text{ where } \operatorname{diam}(\mathcal{P}_{h,i}) = \sup_{x,y \in \mathcal{P}_{h,i}} \ell(x,y).$
- We view this as a tree where node (h, i) (at depth h and position i) is associated to the domain $\mathcal{P}_{h,i}$.

- HOO receives as input a sequence $(\mathcal{P}_{h,i})_{h\geq 0,\ 1\leq i\leq 2^h}$ of subsets of \mathcal{X} satisfying:
 - **1** $\mathcal{P}_{0,1} = \mathcal{X}$,
 - **2** $\mathcal{P}_{h,i} = \mathcal{P}_{h+1,2i-1} \cup \mathcal{P}_{h,2i}$.
 - ③ $\exists \rho \in (0,1) : \operatorname{diam}(\mathcal{P}_{h,i}) \leq \rho^h \text{ where } \operatorname{diam}(\mathcal{P}_{h,i}) = \sup_{x,y \in \mathcal{P}_{h,i}} \ell(x,y).$
- We view this as a tree where node (h, i) (at depth h and position i) is associated to the domain $\mathcal{P}_{h,i}$.

HOO - Global strategy given B-values for each node



- Let $T_{h,i}(n)$ be the number of points we pulled in (h,i).
- Let $\widehat{\mu}_{h,i}(n)$ be the empirical average in the domain (h,i).
- We consider the following upper confidence bound for each node already visited :

$$U_{h,i}(n) = \widehat{\mu}_{h,i}(n) + \sqrt{\frac{2 \ln n}{T_{h,i}(n)}} + \operatorname{diam}(\mathcal{P}_{h,i})$$

$$B_{h,i}(n) = \min \left\{ U_{h,i}(n), \max \left\{ B_{h+1,2i-1}(n), B_{h+1,2i}(n) \right\} \right\}.$$

- Let $T_{h,i}(n)$ be the number of points we pulled in (h,i).
- Let $\widehat{\mu}_{h,i}(n)$ be the empirical average in the domain (h,i).
- We consider the following upper confidence bound for each node already visited :

$$U_{h,i}(n) = \widehat{\mu}_{h,i}(n) + \sqrt{\frac{2 \ln n}{T_{h,i}(n)}} + \operatorname{diam}(\mathcal{P}_{h,i})$$

$$B_{h,i}(n) = \min \left\{ U_{h,i}(n), \max \left\{ B_{h+1,2i-1}(n), B_{h+1,2i}(n) \right\} \right\}.$$

- Let $T_{h,i}(n)$ be the number of points we pulled in (h,i).
- Let $\widehat{\mu}_{h,i}(n)$ be the empirical average in the domain (h,i).
- We consider the following upper confidence bound for each node already visited :

$$U_{h,i}(n) = \widehat{\mu}_{h,i}(n) + \sqrt{\frac{2 \ln n}{T_{h,i}(n)}} + \operatorname{diam}(\mathcal{P}_{h,i}).$$

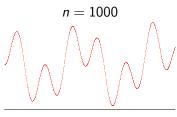
$$B_{h,i}(n) = \min \left\{ U_{h,i}(n), \max \left\{ B_{h+1,2i-1}(n), B_{h+1,2i}(n) \right\} \right\}.$$

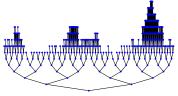
- Let $T_{h,i}(n)$ be the number of points we pulled in (h,i).
- Let $\widehat{\mu}_{h,i}(n)$ be the empirical average in the domain (h,i).
- We consider the following upper confidence bound for each node already visited :

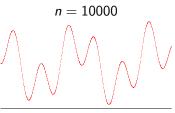
$$U_{h,i}(n) = \widehat{\mu}_{h,i}(n) + \sqrt{\frac{2 \ln n}{T_{h,i}(n)}} + \operatorname{diam}(\mathcal{P}_{h,i}).$$

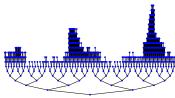
$$B_{h,i}(n) = \min \Big\{ U_{h,i}(n), \max \Big\{ B_{h+1,2i-1}(n), B_{h+1,2i}(n) \Big\} \Big\}.$$

HOO - Numerical Example









Definition (Near-optimality dimension)

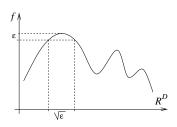
Let $d \ge 0$ be such that $\mathcal{X}_{\epsilon} = \{x \in \mathcal{X}, f^* - f(x) \le \epsilon\}$ can be packed with $O(\epsilon^{-d})$ balls of radius ϵ .

Definition (Near-optimality dimension)

Let $d \ge 0$ be such that $\mathcal{X}_{\epsilon} = \{x \in \mathcal{X}, f^* - f(x) \le \epsilon\}$ can be packed with $O(\epsilon^{-d})$ balls of radius ϵ .

Definition (Near-optimality dimension)

Let $d \ge 0$ be such that $\mathcal{X}_{\epsilon} = \{x \in \mathcal{X}, f^* - f(x) \le \epsilon\}$ can be packed with $O(\epsilon^{-d})$ balls of radius ϵ .



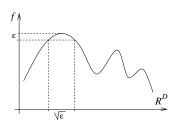
- $\ell(x,y) = ||x-y|| \Rightarrow d = D/2.$
- $\ell(x,y) = ||x-y||^2 \Rightarrow d = 0.$

Theorem

HOO satisfy $R_n \leq \widetilde{O}(n^{(d+1)/(d+2)})$

Definition (Near-optimality dimension)

Let $d \ge 0$ be such that $\mathcal{X}_{\epsilon} = \{x \in \mathcal{X}, f^* - f(x) \le \epsilon\}$ can be packed with $O(\epsilon^{-d})$ balls of radius ϵ .



- $\ell(x,y) = ||x-y|| \Rightarrow d = D/2.$
- $\ell(x,y) = ||x y||^2 \Rightarrow d = 0.$

Theorem

HOO satisfy
$$R_n \leq \widetilde{O}(n^{(d+1)/(d+2)})$$
.

 $\mathcal{X} = [0,1]^D$, $\alpha \ge 0$ and f locally " α -smooth" around (any of) its maximum x^* (in finite number):

$$f(x^*) - f(x) = \Theta(||x - x^*||^{\alpha}) \text{ as } x \to x^*.$$

Theorem

Assume that we run HOO with diameters measured with $\ell(x,y) = ||x-y||^{\beta}$.

- Known smoothness: $\beta = \alpha$. $R_n \leq \tilde{O}(\sqrt{n})$, i.e., the rate is independent of the dimension D. Previously known for D = 1 or $\alpha \leq 1$.
- Smoothness underestimated: $\beta < \alpha$. $R_n \leq \tilde{O}(n^{(d+1)/(d+2)})$ where $d = D\left(\frac{1}{\beta} - \frac{1}{\alpha}\right)$.
- Smoothness overestimated: $\beta > \alpha$. No guarantee. Note UCT corresponds to $\beta = +\infty$.

 $\mathcal{X} = [0,1]^D$, $\alpha \ge 0$ and f locally " α -smooth" around (any of) its maximum x^* (in finite number):

$$f(x^*) - f(x) = \Theta(||x - x^*||^{\alpha}) \text{ as } x \to x^*.$$

Theorem

Assume that we run HOO with diameters measured with $\ell(x, y) = ||x - y||^{\beta}$.

- Known smoothness: $\beta = \alpha$. $R_n \leq \tilde{O}(\sqrt{n})$, i.e., the rate is independent of the dimension D. Previously known for D = 1 or $\alpha \leq 1$.
- Smoothness underestimated: $\beta < \alpha$. $R_n \leq \tilde{O}(n^{(d+1)/(d+2)})$ where $d = D\left(\frac{1}{\beta} \frac{1}{\alpha}\right)$.
- Smoothness overestimated: $\beta > \alpha$. No guarantee. Note: UCT corresponds to $\beta = +\infty$.

 $\mathcal{X} = [0,1]^D$, $\alpha \ge 0$ and f locally " α -smooth" around (any of) its maximum x^* (in finite number):

$$f(x^*) - f(x) = \Theta(||x - x^*||^{\alpha}) \text{ as } x \to x^*.$$

Theorem

Assume that we run HOO with diameters measured with $\ell(x, y) = ||x - y||^{\beta}$.

- Known smoothness: $\beta = \alpha$. $R_n \leq \tilde{O}(\sqrt{n})$, i.e., the rate is independent of the dimension D. Previously known for D = 1 or $\alpha \leq 1$.
- Smoothness underestimated: $\beta < \alpha$. $R_n \leq \tilde{O}(n^{(d+1)/(d+2)})$ where $d = D\left(\frac{1}{\beta} \frac{1}{\alpha}\right)$.
- Smoothness overestimated: $\beta > \alpha$. No guarantee. Note: UCT corresponds to $\beta = +\infty$.

 $\mathcal{X} = [0,1]^D$, $\alpha \ge 0$ and f locally " α -smooth" around (any of) its maximum x^* (in finite number):

$$f(x^*) - f(x) = \Theta(||x - x^*||^{\alpha}) \text{ as } x \to x^*.$$

Theorem

Assume that we run HOO with diameters measured with $\ell(x,y) = ||x-y||^{\beta}$.

- Known smoothness: $\beta = \alpha$. $R_n \leq \tilde{O}(\sqrt{n})$, i.e., the rate is independent of the dimension D. Previously known for D = 1 or $\alpha \leq 1$.
- Smoothness underestimated: $\beta < \alpha$. $R_n \leq \tilde{O}(n^{(d+1)/(d+2)})$ where $d = D\left(\frac{1}{\beta} \frac{1}{\alpha}\right)$.
- Smoothness overestimated: $\beta > \alpha$. No guarantee. Note: UCT corresponds to $\beta = +\infty$.

 $\mathcal{X} = [0,1]^D$, $\alpha \ge 0$ and f locally " α -smooth" around (any of) its maximum x^* (in finite number):

$$f(x^*) - f(x) = \Theta(||x - x^*||^{\alpha}) \text{ as } x \to x^*.$$

Theorem

Assume that we run HOO with diameters measured with $\ell(x, y) = ||x - y||^{\beta}$.

- Known smoothness: $\beta = \alpha$. $R_n \leq \tilde{O}(\sqrt{n})$, i.e., the rate is independent of the dimension D. Previously known for D = 1 or $\alpha \leq 1$.
- Smoothness underestimated: $\beta < \alpha$. $R_n \leq \tilde{O}(n^{(d+1)/(d+2)})$ where $d = D\left(\frac{1}{\beta} \frac{1}{\alpha}\right)$.
- Smoothness overestimated: $\beta > \alpha$. No guarantee. Note: UCT corresponds to $\beta = +\infty$.