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Key idea

Vi~ pt, pr € A(S)

Then, unbiased estimate Et of the loss #;:

o 0y = {; in the full information game,

Joo— ity i i
° Ui+ = Svesvap(V) V;+ in the semi-bandit game,

o [y = PF ViV, t;, with Py = Ey.p,(VVT) in the bandit game.
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which is the optimal rate, Dani, Hayes and Kakade [2008].
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@ In the full information game, against L, adversaries, we have

(for some )
R, < \/2dn,

which is the optimal rate, Dani, Hayes and Kakade [2008].
@ Thus against L., adversaries we have

R, < d%/%\/2n.

But this is suboptimal, Koolen, Warmuth and Kivinen [2010].
@ We show that, for any 7, there exists a subset S C {0,1}¢
and an L, adversary such that

R, > 0.02 d*/%\/n.
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Legendre function

Definition
Let D be a convex subset of RY with nonempty interior int(D)
and boundary 0D. We call Legendre any function F:D — R
such that
@ F is strictly convex and admits continuous first partial
derivatives on int(D),
e For any u € 9D, for any v € int(D), we have
lim (u— v)TVF((l —s)u+sv) = +oo.

s—0,5>0




Bregman divergence

The Bregman divergence Df : D X int(D) associated to a
Legendre function F is defined by

De(u,v) = F(u) — F(v) — (u—v)TVF(v).
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CLEB (Combinatorial LEarning with_

Parameter: F Legendre on D D Conv(S)
(1) Wiy €D
VF(W£+1) = VF(Wt) — gt

(2) weg1 € argmin Dp(w, wi, )
we Conv(S)

(3) Pt+1 € A(S) Wiyl = IE:V’\‘Pi_url v



General regret bound for CLEB

If F admits a Hessian V?F always invertible then,

Ro S diamp,(S) + EY T (V2F(wy)) " Zr.
t=1
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Bandit: new algorithm
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Different instances of CLEB: LinINF (Exchangeable
Hessian)

D = [0, +00)?, F(x) = X0, Jo v (s)ds

INF, Audibert and Bubeck [2009]
- { (x) = exp(nx) : LinExp
(x) = (—nx)"9 g > 1: LinPoly
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Different instances of CLEB: Follow the regularized leader

D = Conv(S), then

t
Wiyl € argmin (Z Tw+ F(W)>

weD s=1

Particularly interesting choice: F self-concordant barrier function,
Abernethy, Hazan and Rakhlin [2008]
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Rnop=_inf max  sup R,
strategy SC{0,1}9 | . I,adversaries

Let n> d?. In the full information and semi-bandit games, we
have:

0.008 dv/n < Rpoo < dV2n,

0.05 Vdn < Rn2 < \/2ednlog(ed),

and in the bandit game:

0.01 d%2\/n < Ry oo < 2 d°/2/2n.

0.05 dv/n < Rn2 < d%/2V/2n.




