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Loss assumptions
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We say that the adversary statisfies the L∞ assumption: if
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Key idea

Vt ∼ pt , pt ∈ ∆(S)

Then, unbiased estimate ˜̀
t of the loss `t :

˜̀
t = `t in the full information game,
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Expanded Exponentially weighted average forecaster
(Exp2)

pt(v) =
exp

(
−η
∑t−1

s=1
˜̀T
s v
)

∑
u∈S exp

(
−η
∑t−1

s=1
˜̀T
s u
)

In the full information game, against L2 adversaries, we have
(for some η)

Rn ≤
√

2dn,

which is the optimal rate, Dani, Hayes and Kakade [2008].

Thus against L∞ adversaries we have

Rn ≤ d3/2
√

2n.

But this is suboptimal, Koolen, Warmuth and Kivinen [2010].

We show that, for any η, there exists a subset S ⊂ {0, 1}d
and an L∞ adversary such that

Rn ≥ 0.02 d3/2√n.
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Legendre function

Definition

Let D be a convex subset of Rd with nonempty interior int(D)
and boundary ∂D. We call Legendre any function F : D → R
such that

F is strictly convex and admits continuous first partial
derivatives on int(D),

For any u ∈ ∂D, for any v ∈ int(D), we have

lim
s→0,s>0

(u − v)T∇F
(
(1− s)u + sv

)
= +∞.
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Bregman divergence

Definition

The Bregman divergence DF : D × int(D) associated to a
Legendre function F is defined by

DF (u, v) = F (u)− F (v)− (u − v)T∇F (v).



CLEB (Combinatorial LEarning with Bregman divergences)

Parameter: F Legendre on D ⊃ Conv(S)
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D
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(1) w ′t+1 ∈ D :

∇F (w ′t+1) = ∇F (wt)− ˜̀
t

(2) wt+1 ∈ argmin
w∈Conv(S)
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General regret bound for CLEB

Theorem

If F admits a Hessian ∇2F always invertible then,

Rn / diamDF
(S) + E

n∑
t=1

˜̀T
t

(
∇2F (wt)

)−1 ˜̀
t .
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D = [0,+∞)d , F (x) = 1
η
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Different instances of CLEB: LinINF (Exchangeable
Hessian)

D = [0,+∞)d , F (x) =
∑d

i=1

∫ xi

0 ψ−1(s)ds

INF, Audibert and Bubeck [2009]

{
ψ(x) = exp(ηx) : LinExp
ψ(x) = (−ηx)−q, q > 1 : LinPoly
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Different instances of CLEB: Follow the regularized leader

D = Conv(S), then

wt+1 ∈ argmin
w∈D

(
t∑

s=1

˜̀T
s w + F (w)

)

Particularly interesting choice: F self-concordant barrier function,
Abernethy, Hazan and Rakhlin [2008]
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Minimax regret for combinatorial prediction games

Rn,∞,2 = inf
strategy

max
S⊂{0,1}d

sup
L∞,L2adversaries

Rn

Theorem

Let n ≥ d2. In the full information and semi-bandit games, we
have:

0.008 d
√

n ≤ Rn,∞ ≤ d
√

2n,

0.05
√

dn ≤ Rn,2 ≤
√

2edn log(ed),

and in the bandit game:

0.01 d3/2√n ≤ Rn,∞ ≤ 2 d5/2
√

2n.

0.05 d
√

n ≤ Rn,2 ≤ d3/2
√

2n.
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