Consistent Minimization of Clustering Objective Functions

Ulrike von Luxburg¹, Sébastien Bubeck², Stefanie Jegelka¹, Michael Kaufmann³

¹Max Planck Institute for Biological Cybernetics, Tübingen, Germany; ²INRIA Futurs Lille, France; ²University of Tübingen, Germany

Discrete optimization approach to clustering

Given n data points and a clustering quality function Q_n (sum to cluster centers, graph cuts, ...)

Among all partitions of the data set, find the one with optimal quality value $Q_n(f)$ In practice: often NP hard ...

Clustering in a statistical setting

Data points have been sampled from some underlying space \mathcal{X}

Among all partitions of the underlying space, construct the one with optimal quality value $\mathcal{Q}(f)$

Given a finite sample only: $f^* = \operatorname{argmin} Q(f) \quad \forall \forall \quad \sim \quad f_n = \operatorname{argmin} Q_n(f)$

Need statistical consistency: $Q(f_t)$

$Q(f_n) \to Q(f^*)$

Optimal discrete solution \implies consistency? No!!!

Intuition based on statistical learning theory for classification:

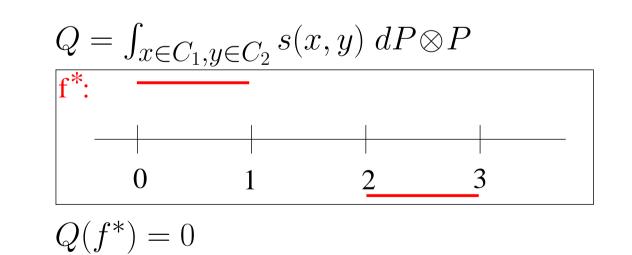
- The class of "all possible partitions" is too large $(K^n \text{ functions}, \text{ is exponential in } n)$
- Consistency can only be guaranteed for "small" function classes (e.g., finite VC dim)
- Plausible: similar reasoning applies to clustering ...

Example for overfitting in clustering:

- Space $\mathcal{X} = [0, 1] \cup [2, 3]$ with uniform distribution
- Similarity function: s(x,y) = 1 if x,y in same interval, 0 otherwise

• Quality function: minimize between-cluster similarity:

Whole space:



Finite sample case:

$$Q_{n} = \frac{1}{n^{2}} \sum_{x \in C_{1}, y \in C_{2}} s(x, y)$$

$$f_{n}: \qquad xx$$

$$- | x x | xx | | x x x |$$

$$0 \qquad \underline{1} \qquad \underline{2} \qquad \underline{3}$$

$$Q_n(f_n) = 0$$

$$Q(f_n) = \int_{x \in C_1, y \in C_2} s(x, y) dP \otimes P$$

$$= \int_0^{1/2} \int_{1/2}^1 1 dP \otimes P = 1/16$$

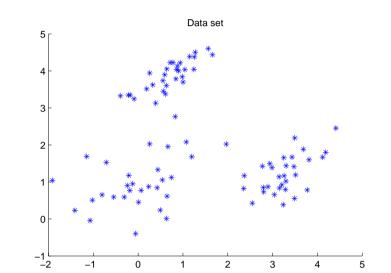
Thus $Q(f_n) \not\to Q(f^*)$, no consistency!

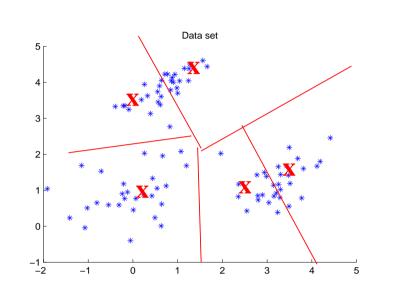
Optimal discrete solution \implies overfitting!!! Need to optimize over "small" function class!!!

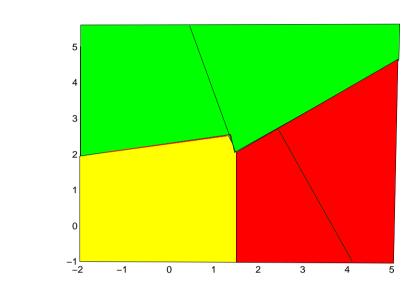
- \mathcal{F}_n should be small enough to avoid overfitting
- \mathcal{F}_n should be rich enough to approximate any partition of the underlying space (for large n)
- We need to be able to find the global minimizer of Q_n in \mathcal{F}_n .

Nearest neighbor clustering (NNC)

- Subsample $m \approx \log(n)$ seed points from the data points
- Build the neighborhood cells A_1, \ldots, A_m by assigning all data points to their closest seed point
- $\mathcal{F}_n :=$ functions which are constant on all cells A_i
- $f_n := \operatorname{argmin}_{f \in \mathcal{F}_n} Q_n(f)$







When is nearest neighbor clustering consistent?

General setting:

- $\mathcal{F} := \{f : \mathbb{R}^d \to \{1, \dots, K\} \mid f \text{ continuous } \mathbb{P}\text{-a.e.}$ and A(f) is true}
- $\mathcal{F}_n := \{f : \mathbb{R}^d \to \{1, \dots, K\} \mid f \text{ satisfies } f(x) = f(\mathrm{NN}_m(x)), \text{ and } A_n(f) \text{ is true} \}$ (where A(f) and $A_n(f)$ are predicates to define the classes)
- $f^* \in \operatorname{argmin}_{f \in \mathcal{F}} Q(f)$ and $f_n \in \operatorname{argmin}_{f \in \mathcal{F}_n} Q_n(f)$

Theorem (General consistency of nearest neighbor clustering) Assume that: 1. $Q_n(f)$ is a consistent estimator of Q(f) which converges sufficiently fast:

$$\forall \varepsilon > 0, \ K^m(2n)^{(d+1)m^2} \sup_{f \in \widetilde{\mathcal{F}}_n} \mathbb{P}(|Q_n(f) - Q(f)| > \varepsilon) \to 0.$$

2. $A_n(f)$ is an estimator of A(f) which is "consistent" in the following way:

$$\mathbb{P}(A_n(\widetilde{f}^*) \ true) \to 1$$
 and $\mathbb{P}(A(f_n) \ true) \to 1.$

3. Q is uniformly continuous with respect to the 0-1-distance L_n between \mathcal{F} and \mathcal{F}_n :

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 \ \forall f \in \mathcal{F} \ \forall g \in \mathcal{F}_n : \ L_n(f,g) \le \delta(\varepsilon) \implies |Q(f) - Q(g)| \le \varepsilon.$$

 $4. m(n) \rightarrow \infty.$

Then nearest neighbor clustering is weakly consistent: $Q(f_n) \to Q(f^*)$ in probability.

Proof: Introduce functions

$$f_n^* \in \operatorname{argmin}_{f \in \mathcal{F}_n} Q(f)$$
 and $\widetilde{f}^*(x) := f^*(\operatorname{NN}_m(x)).$

Split in approximation and estimation error:

$$\mathbb{P}(Q(f_n) - Q(f^*) \ge \varepsilon) \le \mathbb{P}(Q(f_n) - Q(f_n^*) \ge \varepsilon/2) + \mathbb{P}(Q(f_n^*) - Q(f^*) \ge \varepsilon/2).$$

Estimation error:

- symmetrization by a ghost sample (attention, we do not assume $\mathbb{E}Q_n = Q$)
- use Assumption (1)

Approximation error: Split in cases " $A_n(\widetilde{f}^*)$ true" and " $A_n(\widetilde{f}^*)$ false"

$$\mathbb{P}(Q(f_n^*) - Q(f^*) \ge \varepsilon) \le \mathbb{P}(A_n(\widetilde{f}^*) \text{ false}) + \mathbb{P}(\widetilde{f}^* \in \mathcal{F}_n \text{ and } Q(\widetilde{f}^*) - Q(f^*) \ge \varepsilon)$$

First term $\rightarrow 0$ by Assumption (2)

Second term $\to 0$: show that under Assumption (4), the distance between $f(\cdot)$ and $f(NN_m(\cdot))$ goes to 0 uniformly in f and use Assumption (3).

Theorem (Consistency of NNC for common objective functions)

Use predicates specifying a minimal cluster size:

$$A(f)$$
 is true : \iff $\operatorname{vol}(f_k) > a \ \forall k = 1, \dots, K$
 $A_n(f)$ is true : \iff $\operatorname{vol}_n(f_k) > a_n \ \forall k = 1, \dots, K$

Assume that $a_n \to a$, $m(n) \to \infty$, $m^2 \log n/(n(a-a_n)^2) \to 0$.

Then nearest neighbor clustering is consistent for the following clustering objective functions: cut, ratio cut, normalized cut, modularity, K-means objective function, ratio of between- and within-cluster similarity,

Experiments: Ncut and K-means objective functions

Setup of the experiments:

- \bullet Compare nearest neighbor clustering to spectral clustering and K-means algorithm
- Numeric data sets and graph-based data sets
- Several random restarts for all algorithms, results averaged over many train/test splits
- To compute "test quality", use greedy extension operator

Implementation of nearest neighbor clustering: using branch and bound

TO DO Steffi: can I get your figures 3.4.5 and 3.4.5 as pdf???

Results: First line: training quality, second line: test quality

Numeric	K-means	s obj.fct.	Ncut	obj.fct	Network data	NNC	spect
data sets	K-means alg.	NNC	spectral cl.	NNC	ecoli.interact	0.06	
breast-c.	6.95 ± 0.19	7.04 ± 0.21	0.11 ± 0.02	0.09 ± 0.02	ecoli.metabol	0.03	
	7.12 ± 0.20	7.12 ± 0.22	0.22 ± 0.07	0.21 ± 0.07	helico	0.16	
diabetis	6.62 ± 0.22	6.71 ± 0.22	0.03 ± 0.02	0.03 ± 0.02	beta3s	0.00	
	6.72 ± 0.22	6.72 ± 0.22	0.04 ± 0.03	0.05 ± 0.05	AS-19971108	0.02	
german	18.26 ± 0.27	18.56 ± 0.28	0.02 ± 0.02	0.02 ± 0.02	AS-19980402	0.01	
	18.35 ± 0.30	18.45 ± 0.32	0.04 ± 0.08	0.03 ± 0.03	AS-19980703	0.02	
heart	10.65 ± 0.46	10.77 ± 0.47	0.18 ± 0.03	0.17 ± 0.02	AS-19981002	0.04	
	10.75 ± 0.46	10.74 ± 0.46	0.28 ± 0.03	0.30 ± 0.07	AS-19990114	0.08	
splice	68.99 ± 0.24	69.89 ± 0.24	0.36 ± 0.10	0.44 ± 0.16	AS-19990402	0.11	
	69.03 ± 0.24	69.18 ± 0.25	0.58 ± 0.09	0.66 ± 0.18	netscience	0.01	
bcw	3.97 ± 0.26	3.98 ± 0.26	0.02 ± 0.01	0.02 ± 0.01	polblogs	0.11	
	3.98 ± 0.26	3.98 ± 0.26	0.04 ± 0.01	0.08 ± 0.07	power	0.00	
ionosph.	25.72 ± 1.63	25.77 ± 1.63	0.06 ± 0.03	0.04 ± 0.01	email	0.27	
	25.76 ± 1.63	25.77 ± 1.63	0.12 ± 0.11	0.14 ± 0.12	yeastProtInt	0.04	
pima	6.62 ± 0.22	6.73 ± 0.23	0.03 ± 0.03	0.03 ± 0.03	protNW1	0.00	
	6.73 ± 0.23	6.73 ± 0.23	0.05 ± 0.04	0.09 ± 0.13	protNW2	0.08	
cellcycle	0.78 ± 0.03	0.78 ± 0.03	0.12 ± 0.02	0.10 ± 0.01	protNW3	0.01	
	0.78 ± 0.03	0.78 ± 0.02	0.16 ± 0.02	0.15 ± 0.03	protNW4	0.03	
	1					'	

- Training results: NNC can compete with K-means and spectral clustering \odot
- Test set results: not much better for NNC than for K-means and spectral clustering \odot Explanation: both K-means and spectral clustering also use small function classes ...

Conclusions:

To avoid overfitting in clustering: use a small function class Do not attempt to solve the discrete problem exactly One simple alternative: nearest neighbor clustering