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Discrete optimization approach to clustering

Given n data points and a clustering quality function Qn (sum to cluster centers, graph cuts, . . .)

Among all partitions of the data set, find the one with optimal quality value Qn(f )

In practice: often NP hard . . .

Clustering in a statistical setting

Data points have been sampled from some underlying space X

Among all partitions of the underlying space, construct the one with optimal quality
value Q(f )

Given a finite sample only: ��� f∗ = argmin Q(f ) ��� ; fn = argmin Qn(f )

Need statistical consistency: Q(fn) → Q(f∗)

Optimal discrete solution =⇒ consistency? No!!!

Intuition based on statistical learning theory for classification:

• The class of “all possible partitions” is too large (Kn functions, is exponential in n)

• Consistency can only be guaranteed for “small” function classes (e.g., finite VC dim)

• Plausible: similar reasoning applies to clustering ...

Example for overfitting in clustering:
• Space X = [0, 1] ∪ [2, 3] with uniform distribution

• Similarity function: s(x, y) = 1 if x, y in same interval, 0 otherwise
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•Quality function: minimize between-cluster similarity:

Whole space:

Q =
∫
x∈C1,y∈C2

s(x, y) dP⊗P
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f  :*
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Q(f∗) = 0

Finite sample case:

Qn = 1
n2

∑
x∈C1,y∈C2

s(x, y)
xnf  :

x x xx x xx
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x

0

Qn(fn) = 0
Q(fn) =

∫
x∈C1,y∈C2

s(x, y) dP⊗P

=
∫ 1/2
0

∫ 1
1/2 1 dP⊗P = 1/16

Thus Q(fn) 6→ Q(f∗), no consistency!

Optimal discrete solution =⇒ overfitting!!!
Need to optimize over “small” function class!!!

• Fn should be small enough to avoid overfitting

• Fn should be rich enough to approximate any partition of the underlying space (for large n)

•We need to be able to find the global minimizer of Qn in Fn.

Idea: use functions which are constant on local neighborhoods

Nearest neighbor clustering (NNC)

� Subsample m ≈ log(n) seed points from the data points

� Build the neighborhood cells A1, . . . , Am by assigning all data points to their closest seed point

�Fn := functions which are constant on all cells Aj

� fn := argminf∈Fn
Qn(f )
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When is nearest neighbor clustering consistent?

General setting:

• F := {f : Rd → {1, . . . , K} | f continuous P-a.e. and A(f ) is true}
• Fn := {f : Rd → {1, . . . , K} | f satisfies f (x) = f (NNm(x)), and An(f ) is true}
(where A(f ) and An(f ) are predicates to define the classes)

• f∗ ∈ argminf∈F Q(f ) and fn ∈ argminf∈Fn
Qn(f )

Theorem (General consistency of nearest neighbor clustering) Assume that:

1. Qn(f ) is a consistent estimator of Q(f ) which converges sufficiently fast:

∀ε > 0, Km(2n)(d+1)m2
sup

f∈F̃n
P(|Qn(f )−Q(f )| > ε) → 0.

2. An(f ) is an estimator of A(f ) which is “consistent” in the following way:

P(An(f̃∗) true) → 1 and P(A(fn) true) → 1.

3. Q is uniformly continuous with respect to the 0-1-distance Ln between F and Fn:

∀ε > 0 ∃δ(ε) > 0 ∀f ∈ F ∀g ∈ Fn : Ln(f, g) ≤ δ(ε) =⇒ |Q(f )−Q(g)| ≤ ε.

4. m(n) →∞.

Then nearest neighbor clustering is weakly consistent: Q(fn) → Q(f∗) in probability.

Proof: Introduce functions

f∗n ∈ argminf∈Fn
Q(f ) and f̃∗(x) := f∗(NNm(x)).

Split in approximation and estimation error:

P
(
Q(fn)−Q(f∗) ≥ ε

)
≤ P

(
Q(fn)−Q(f∗n) ≥ ε/2

)
+ P

(
Q(f∗n)−Q(f∗) ≥ ε/2

)
.

Estimation error:

• symmetrization by a ghost sample (attention, we do not assume EQn = Q)

• use Assumption (1)

Approximation error: Split in cases “An(f̃∗) true” and “An(f̃∗) false”

P
(
Q(f∗n)−Q(f∗) ≥ ε

)
≤ P(An(f̃∗) false) + P

(
f̃∗ ∈ Fn and Q(f̃∗)−Q(f∗) ≥ ε

)
First term → 0 by Assumption (2)
Second term → 0: show that under Assumption (4), the distance between f (·) and f (NNm(·)) goes
to 0 uniformly in f and use Assumption (3). 2

Theorem (Consistency of NNC for common objective functions)
Use predicates specifying a minimal cluster size:

A(f ) is true : ⇐⇒ vol(fk) > a ∀k = 1, . . . , K

An(f ) is true : ⇐⇒ voln(fk) > an ∀k = 1, . . . , K

Assume that an → a, m(n) →∞, m2 log n/(n(a− an)2) → 0.
Then nearest neighbor clustering is consistent for the following clustering objective functions:
cut, ratio cut, normalized cut, modularity, K-means objective function, ratio of
between- and within-cluster similarity, ... .

Experiments: Ncut and K-means objective functions

Setup of the experiments:

• Compare nearest neighbor clustering to spectral clustering and K-means algorithm

• Numeric data sets and graph-based data sets

• Several random restarts for all algorithms, results averaged over many train/test splits

• To compute “test quality”, use greedy extension operator

Implementation of nearest neighbor clustering: using branch and bound

TO DO Steffi: can I get your figures 3.4.5 and 3.4.5 as pdf???

Results: First line: training quality, second line: test quality

Numeric K-means obj.fct. Ncut obj.fct
data sets K-means alg. NNC spectral cl. NNC
breast-c. 6.95± 0.19 7.04± 0.21 0.11± 0.02 0.09± 0.02

7.12± 0.20 7.12± 0.22 0.22± 0.07 0.21± 0.07
diabetis 6.62± 0.22 6.71± 0.22 0.03± 0.02 0.03± 0.02

6.72± 0.22 6.72± 0.22 0.04± 0.03 0.05± 0.05
german 18.26± 0.27 18.56± 0.28 0.02± 0.02 0.02± 0.02

18.35± 0.30 18.45± 0.32 0.04± 0.08 0.03± 0.03
heart 10.65± 0.46 10.77± 0.47 0.18± 0.03 0.17± 0.02

10.75± 0.46 10.74± 0.46 0.28± 0.03 0.30± 0.07
splice 68.99± 0.24 69.89± 0.24 0.36± 0.10 0.44± 0.16

69.03± 0.24 69.18± 0.25 0.58± 0.09 0.66± 0.18
bcw 3.97± 0.26 3.98± 0.26 0.02± 0.01 0.02± 0.01

3.98± 0.26 3.98± 0.26 0.04± 0.01 0.08± 0.07
ionosph. 25.72± 1.63 25.77± 1.63 0.06± 0.03 0.04± 0.01

25.76± 1.63 25.77± 1.63 0.12± 0.11 0.14± 0.12
pima 6.62± 0.22 6.73± 0.23 0.03± 0.03 0.03± 0.03

6.73± 0.23 6.73± 0.23 0.05± 0.04 0.09± 0.13
cellcycle 0.78± 0.03 0.78± 0.03 0.12± 0.02 0.10± 0.01

0.78± 0.03 0.78± 0.02 0.16± 0.02 0.15± 0.03

Network data NNC spectral cl.
ecoli.interact 0.06 0.06
ecoli.metabol 0.03 0.04
helico 0.16 0.16
beta3s 0.00 0.00
AS-19971108 0.02 0.02
AS-19980402 0.01 1.00
AS-19980703 0.02 0.02
AS-19981002 0.04 0.04
AS-19990114 0.08 0.05
AS-19990402 0.11 0.10
netscience 0.01 0.01
polblogs 0.11 0.11
power 0.00 0.00
email 0.27 0.27
yeastProtInt 0.04 0.06
protNW1 0.00 0.00
protNW2 0.08 1.00
protNW3 0.01 0.80
protNW4 0.03 0.76

• Training results: NNC can compete with K-means and spectral clustering ,
• Test set results: not much better for NNC than for K-means and spectral clustering /

Explanation: both K-means and spectral clustering also use small function classes ...

Conclusions:
To avoid overfitting in clustering: use a small function class
Do not attempt to solve the discrete problem exactly
One simple alternative: nearest neighbor clustering


