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Discrete optimization approach to clustering

Nearest neighbor clustering (NNC)

Given n data points and a clustering quality function )y, (sum to cluster centers, graph cuts, .. .)

Among all partitions of the data set, find the one with optimal quality value Q,(f)

In practice: often NP hard ...

Clustering in a statistical setting

Data points have been sampled from some underlying space X

Among all partitions of the underlying space, construct the one with optimal quality

value Q(f)

Given a finite sample only: 495 fF=argmin Q(f) %%% ~ fn = argmin Qp(f)

Q(fn) — Q)

Need statistical consistency:

e Subsample m =& log(n) seed points from the data points
e Build the neighborhood cells Ay, ..

o Jy := functions which are constant on all cells A;

o f, = argminfe}"n Qn(f)

., Ay, by assigning all data points to their closest seed point

When is nearest neighbor clustering consistent?

Optimal discrete solution — consistency? No!!!

Intuition based on statistical learning theory for classification:

e The class of “all possible partitions” is too large (K™ functions, is exponential in n)
e Consistency can only be guaranteed for “small” function classes (e.g., finite VC dim)
e Plausible: similar reasoning applies to clustering ...

Example for overfitting in clustering:
e Space X = |0, 1] U |2, 3] with uniform distribution
e Similarity function: s(x,y) = 1 if z, y in same interval, 0 otherwise

0 1 2 3
e (Quality function: minimize between-cluster similarity:

Whole space: Finite sample case:

Q = fxEC’l,yECQ s(z,y) dP®P

f fr: XX
| | | | R e
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Q(f*> =0 Qn(fn) =0
QUfn) = [rec, yec,s(@,y) APOP

= [y [y 1aPeP =1/10
Thus Q(fn) /4~ Q(f*), no consistency!

Optimal discrete solution =— overfitting!!!
Need to optimize over “small” function class!!!

e F,, should be small enough to avoid overfitting
e F;, should be rich enough to approximate any partition of the underlying space (for large n)
e We need to be able to find the global minimizer of (), in Fy,.

Idea: use functions which are constant on local neighborhoods

General setting:

o F ={f:R*= {1,..., K} | f continuous P-a.e. and A(f) is true}
o Fr ={f :RY = {1,...,K}| f satisfies f(z) = f(NNy,(x)), and A,(f) is true}
(where A(f) and Ay, (f) are predicates to define the classes)

o [* €argminscr Q(f) and fy, € argmincr Qn(f)

Theorem (General consistency of nearest neighbor clustering) Assume that:

1.Qn(f) is a consistent estimator of Q(f) which converges sufficiently fast:
Ve >0, K™(2n) T sup = P(Qu(f) — Q(f)] > ) = 0.

2. Ap(f) is an estimator of A(f) which is “consistent” in the following way:

~

P(An(f*) true) — 1 and P(A(fy) true) — 1.

3. Q) 1s uniformly continuous with respect to the 0-1-distance L, between F and Fi,:

Ve>030(e) >0VfeFVge Fn: Lu(f,g) <dle) = |Q(f) —Qg)] <e.

4.m(n) — oo.

Then nearest neighbor clustering is weakly consistent: Q(fn) — Q(f*) in probability.

Proof: Introduce functions

—~

fre argminfej:nQ(f) and f(x) == f*(NNy,(x)).

Split in approximation and estimation error:

P(QUn) — QUY) 2 ) < P(QU — QU = /2) + P(QUD — QU) = ¢/2).

Estimation error:
e symmetrization by a ghost sample (attention, we do not assume EQ,, = Q)
e usc Assumption (1)

~ ~

Approximation error: Split in cases “Ay,(f*) true” and “A,(f*) false”

~

P(Q(fy) = Q) > &) < P(Ap(f") false) + P(f* € Fn and Q(f*) — Q(f*) > ¢)

First term — 0 by Assumption (2)
Second term — 0: show that under Assumption (4), the distance between f(-) and f(NN;,(+)) goes
to 0 uniformly in f and use Assumption (3). O

Theorem (Consistency of NNC for common objective functions)
Use predicates specifying a minimal cluster size:

Assume that a, — a, m(n) — oo, m?logn/(n(a — ap)?) — 0.

A(f) is true : <= vol(fr) >a Vk=1,..., K
An(f) is true : <= voly(fr) >an Vk=1,..., K

Then nearest neighbor clustering 1s consistent for the following clustering objective functions:

cut, ratio cut, normalized cut, modularity, K-means objective function, ratio of

between- and within-cluster similarity, ... .

Experiments: Ncut and K-means objective functions

Setup of the experiments:

e Compare nearest neighbor clustering to spectral clustering and K-means algorithm

e Numeric data sets and graph-based data sets

e Several random restarts for all algorithms, results averaged over many train/test splits
e 'To compute “test quality”, use greedy extension operator

Implementation of nearest neighbor clustering: using branch and bound

TO DO Stefhi: can I get your figures 3.4.5 and 3.4.5 as pdf?77

Results: First line: training quality, second line: test quality

Network data

NNC

spectral cl.

Numeric K-means obj.fct. Ncut obj.fct
data sets | K-means alg. NNC | spectral cl. NNC
breast-c. |  6.95+0.19 7.04+0.21]0.11 £0.02 0.09 £ 0.02
7124020 7.1240.22/0.22£0.07 0.21 &£ 0.07
diabetis 6.62+0.22 6.71 £0.22/0.03 £0.02 0.03 & 0.02
6.724+0.22 6.7240.22/0.04 £0.03 0.05 4 0.05
german | 18.26 £ 0.27 18.56 + 0.2810.02 4+ 0.02 0.02 £ 0.02
18.35 £0.30 18.4540.32]0.04 £ 0.08 0.03 £0.03
heart 10.65 4 0.46 10.77 4 0.47,0.18 £0.03 0.17 4 0.02
10.75 4 0.46 10.74 4 0.46 1 0.28 £0.03 0.30 4 0.07
splice 68.99 £ 0.24 69.89 £0.240.36 & 0.10 0.44 £ 0.16
69.03 £0.24 69.18 £0.25]0.58 + 0.09 0.66 £ 0.18
bew 3.974+0.26 3.9840.26|0.02 4+ 0.01 0.02 £0.01
3.984+0.26 3.9840.26|0.04 4 0.01 0.08 4 0.07
ionosph. | 25.72+1.63 25.77 %+ 1.63|0.06 &= 0.03 0.04 £ 0.01
25.76 £1.63 25.77 £1.63]/0.124+0.11 0.14 £0.12
pima, 6.624+0.22 6.7340.23]0.03 4 0.03 0.03 4 0.03
6.734+0.23 6.734+0.23]0.05 4+ 0.04 0.09 £+ 0.13
cellecycle | 0.78 2 0.03 0.78 £0.03/0.12 4 0.02 0.10 4 0.01
0.784+0.03 0.78 =0.02]0.16 & 0.02 0.15 £ 0.03

ecoli.interact
ecoli.metabol
helico

betads
AS-19971108
AS-19980402
AS-19980703
AS-19981002
AS-19990114
AS-19990402
netscience
polblogs
power

email

yeast ProtInt
protNW1
protNW2
protNW3
protNW4

0.06
0.03
0.16
0.00
0.02
0.01
0.02
0.04
0.08
0.11
0.01
0.11
0.00
0.27
0.04
0.00
0.08
0.01
0.03

0.06
0.04
0.16
0.00
0.02
1.00
0.02
0.04
0.05
0.10
0.01
0.11
0.00
0.27
0.06
0.00
1.00
0.80
0.76

e Training results: NNC can compete with K-means and spectral clustering ©

e Test set results: not much better for NNC than for K-means and spectral clustering ®
Explanation: both K-means and spectral clustering also use small function classes ...

Conclusions:
To avoid overfitting in clustering: use a small function class
Do not attempt to solve the discrete problem exactly

One simple alternative: nearest neighbor clustering




