Consistent Minimization of Clustering Objective Functions ## Ulrike von Luxburg¹, Sébastien Bubeck², Stefanie Jegelka¹, Michael Kaufmann³ ¹Max Planck Institute for Biological Cybernetics, Tübingen, Germany; ²INRIA Futurs Lille, France; ²University of Tübingen, Germany ## Discrete optimization approach to clustering Given n data points and a clustering quality function Q_n (sum to cluster centers, graph cuts, ...) Among all partitions of the data set, find the one with optimal quality value $Q_n(f)$ In practice: often NP hard ... ## Clustering in a statistical setting Data points have been sampled from some underlying space \mathcal{X} Among all partitions of the underlying space, construct the one with optimal quality value $\mathcal{Q}(f)$ Given a finite sample only: $f^* = \operatorname{argmin} Q(f) \quad \forall \forall \quad \sim \quad f_n = \operatorname{argmin} Q_n(f)$ Need statistical consistency: $Q(f_t)$ #### $Q(f_n) \to Q(f^*)$ ## Optimal discrete solution \implies consistency? No!!! #### Intuition based on statistical learning theory for classification: - The class of "all possible partitions" is too large $(K^n \text{ functions}, \text{ is exponential in } n)$ - Consistency can only be guaranteed for "small" function classes (e.g., finite VC dim) - Plausible: similar reasoning applies to clustering ... ### Example for overfitting in clustering: - Space $\mathcal{X} = [0, 1] \cup [2, 3]$ with uniform distribution - Similarity function: s(x,y) = 1 if x,y in same interval, 0 otherwise • Quality function: minimize between-cluster similarity: Whole space: Finite sample case: $$Q_{n} = \frac{1}{n^{2}} \sum_{x \in C_{1}, y \in C_{2}} s(x, y)$$ $$f_{n}: \qquad xx$$ $$- | x x | xx | | x x x |$$ $$0 \qquad \underline{1} \qquad \underline{2} \qquad \underline{3}$$ $$Q_n(f_n) = 0$$ $$Q(f_n) = \int_{x \in C_1, y \in C_2} s(x, y) dP \otimes P$$ $$= \int_0^{1/2} \int_{1/2}^1 1 dP \otimes P = 1/16$$ Thus $Q(f_n) \not\to Q(f^*)$, no consistency! Optimal discrete solution \implies overfitting!!! Need to optimize over "small" function class!!! - \mathcal{F}_n should be small enough to avoid overfitting - \mathcal{F}_n should be rich enough to approximate any partition of the underlying space (for large n) - We need to be able to find the global minimizer of Q_n in \mathcal{F}_n . ## Nearest neighbor clustering (NNC) - Subsample $m \approx \log(n)$ seed points from the data points - Build the neighborhood cells A_1, \ldots, A_m by assigning all data points to their closest seed point - $\mathcal{F}_n :=$ functions which are constant on all cells A_i - $f_n := \operatorname{argmin}_{f \in \mathcal{F}_n} Q_n(f)$ ## When is nearest neighbor clustering consistent? #### General setting: - $\mathcal{F} := \{f : \mathbb{R}^d \to \{1, \dots, K\} \mid f \text{ continuous } \mathbb{P}\text{-a.e.}$ and A(f) is true} - $\mathcal{F}_n := \{f : \mathbb{R}^d \to \{1, \dots, K\} \mid f \text{ satisfies } f(x) = f(\mathrm{NN}_m(x)), \text{ and } A_n(f) \text{ is true} \}$ (where A(f) and $A_n(f)$ are predicates to define the classes) - $f^* \in \operatorname{argmin}_{f \in \mathcal{F}} Q(f)$ and $f_n \in \operatorname{argmin}_{f \in \mathcal{F}_n} Q_n(f)$ Theorem (General consistency of nearest neighbor clustering) Assume that: 1. $Q_n(f)$ is a consistent estimator of Q(f) which converges sufficiently fast: $$\forall \varepsilon > 0, \ K^m(2n)^{(d+1)m^2} \sup_{f \in \widetilde{\mathcal{F}}_n} \mathbb{P}(|Q_n(f) - Q(f)| > \varepsilon) \to 0.$$ 2. $A_n(f)$ is an estimator of A(f) which is "consistent" in the following way: $$\mathbb{P}(A_n(\widetilde{f}^*) \ true) \to 1$$ and $\mathbb{P}(A(f_n) \ true) \to 1.$ 3. Q is uniformly continuous with respect to the 0-1-distance L_n between \mathcal{F} and \mathcal{F}_n : $$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 \ \forall f \in \mathcal{F} \ \forall g \in \mathcal{F}_n : \ L_n(f,g) \le \delta(\varepsilon) \implies |Q(f) - Q(g)| \le \varepsilon.$$ $4. m(n) \rightarrow \infty.$ Then nearest neighbor clustering is weakly consistent: $Q(f_n) \to Q(f^*)$ in probability. **Proof:** Introduce functions $$f_n^* \in \operatorname{argmin}_{f \in \mathcal{F}_n} Q(f)$$ and $\widetilde{f}^*(x) := f^*(\operatorname{NN}_m(x)).$ Split in approximation and estimation error: $$\mathbb{P}(Q(f_n) - Q(f^*) \ge \varepsilon) \le \mathbb{P}(Q(f_n) - Q(f_n^*) \ge \varepsilon/2) + \mathbb{P}(Q(f_n^*) - Q(f^*) \ge \varepsilon/2).$$ #### Estimation error: - symmetrization by a ghost sample (attention, we do not assume $\mathbb{E}Q_n = Q$) - use Assumption (1) **Approximation error:** Split in cases " $A_n(\widetilde{f}^*)$ true" and " $A_n(\widetilde{f}^*)$ false" $$\mathbb{P}(Q(f_n^*) - Q(f^*) \ge \varepsilon) \le \mathbb{P}(A_n(\widetilde{f}^*) \text{ false}) + \mathbb{P}(\widetilde{f}^* \in \mathcal{F}_n \text{ and } Q(\widetilde{f}^*) - Q(f^*) \ge \varepsilon)$$ First term $\rightarrow 0$ by Assumption (2) Second term $\to 0$: show that under Assumption (4), the distance between $f(\cdot)$ and $f(NN_m(\cdot))$ goes to 0 uniformly in f and use Assumption (3). Theorem (Consistency of NNC for common objective functions) Use predicates specifying a minimal cluster size: $$A(f)$$ is true : \iff $\operatorname{vol}(f_k) > a \ \forall k = 1, \dots, K$ $A_n(f)$ is true : \iff $\operatorname{vol}_n(f_k) > a_n \ \forall k = 1, \dots, K$ Assume that $a_n \to a$, $m(n) \to \infty$, $m^2 \log n/(n(a-a_n)^2) \to 0$. Then nearest neighbor clustering is consistent for the following clustering objective functions: cut, ratio cut, normalized cut, modularity, K-means objective function, ratio of between- and within-cluster similarity, ## **Experiments:** Ncut and K-means objective functions #### Setup of the experiments: - \bullet Compare nearest neighbor clustering to spectral clustering and K-means algorithm - Numeric data sets and graph-based data sets - Several random restarts for all algorithms, results averaged over many train/test splits - To compute "test quality", use greedy extension operator Implementation of nearest neighbor clustering: using branch and bound **TO DO** Steffi: can I get your figures 3.4.5 and 3.4.5 as pdf??? Results: First line: training quality, second line: test quality | Numeric | K-means | s obj.fct. | Ncut | obj.fct | Network data | NNC | spect | |-----------|------------------|------------------|-----------------|-----------------|----------------|------|-------| | data sets | K-means alg. | NNC | spectral cl. | NNC | ecoli.interact | 0.06 | | | breast-c. | 6.95 ± 0.19 | 7.04 ± 0.21 | 0.11 ± 0.02 | 0.09 ± 0.02 | ecoli.metabol | 0.03 | | | | 7.12 ± 0.20 | 7.12 ± 0.22 | 0.22 ± 0.07 | 0.21 ± 0.07 | helico | 0.16 | | | diabetis | 6.62 ± 0.22 | 6.71 ± 0.22 | 0.03 ± 0.02 | 0.03 ± 0.02 | beta3s | 0.00 | | | | 6.72 ± 0.22 | 6.72 ± 0.22 | 0.04 ± 0.03 | 0.05 ± 0.05 | AS-19971108 | 0.02 | | | german | 18.26 ± 0.27 | 18.56 ± 0.28 | 0.02 ± 0.02 | 0.02 ± 0.02 | AS-19980402 | 0.01 | | | | 18.35 ± 0.30 | 18.45 ± 0.32 | 0.04 ± 0.08 | 0.03 ± 0.03 | AS-19980703 | 0.02 | | | heart | 10.65 ± 0.46 | 10.77 ± 0.47 | 0.18 ± 0.03 | 0.17 ± 0.02 | AS-19981002 | 0.04 | | | | 10.75 ± 0.46 | 10.74 ± 0.46 | 0.28 ± 0.03 | 0.30 ± 0.07 | AS-19990114 | 0.08 | | | splice | 68.99 ± 0.24 | 69.89 ± 0.24 | 0.36 ± 0.10 | 0.44 ± 0.16 | AS-19990402 | 0.11 | | | | 69.03 ± 0.24 | 69.18 ± 0.25 | 0.58 ± 0.09 | 0.66 ± 0.18 | netscience | 0.01 | | | bcw | 3.97 ± 0.26 | 3.98 ± 0.26 | 0.02 ± 0.01 | 0.02 ± 0.01 | polblogs | 0.11 | | | | 3.98 ± 0.26 | 3.98 ± 0.26 | 0.04 ± 0.01 | 0.08 ± 0.07 | power | 0.00 | | | ionosph. | 25.72 ± 1.63 | 25.77 ± 1.63 | 0.06 ± 0.03 | 0.04 ± 0.01 | email | 0.27 | | | | 25.76 ± 1.63 | 25.77 ± 1.63 | 0.12 ± 0.11 | 0.14 ± 0.12 | yeastProtInt | 0.04 | | | pima | 6.62 ± 0.22 | 6.73 ± 0.23 | 0.03 ± 0.03 | 0.03 ± 0.03 | protNW1 | 0.00 | | | | 6.73 ± 0.23 | 6.73 ± 0.23 | 0.05 ± 0.04 | 0.09 ± 0.13 | protNW2 | 0.08 | | | cellcycle | 0.78 ± 0.03 | 0.78 ± 0.03 | 0.12 ± 0.02 | 0.10 ± 0.01 | protNW3 | 0.01 | | | | 0.78 ± 0.03 | 0.78 ± 0.02 | 0.16 ± 0.02 | 0.15 ± 0.03 | protNW4 | 0.03 | | | | 1 | | | | | ' | | - Training results: NNC can compete with K-means and spectral clustering \odot - Test set results: not much better for NNC than for K-means and spectral clustering \odot Explanation: both K-means and spectral clustering also use small function classes ... #### **Conclusions:** To avoid overfitting in clustering: use a small function class Do not attempt to solve the discrete problem exactly One simple alternative: nearest neighbor clustering