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Abstract

We consider the stochastic multi-armed bandit problem with a prior distribution on the reward dis-
tributions. We are interested in studying prior-free and prior-dependent regret bounds, very much in
the same spirit as the usual distribution-free and distribution-dependent bounds for the non-Bayesian
stochastic bandit. Building on the techniques of Audibert and Bubeck [2009] and Russo and Roy
[2013] we first show that Thompson Sampling attains an optimal prior-free bound in the sense that
for any prior distribution its Bayesian regret is bounded from above by 14

√
nK. This result is unim-

provable in the sense that there exists a prior distribution such that any algorithm has a Bayesian
regret bounded from below by 1

20

√
nK. We also study the case of priors for the setting of Bubeck

et al. [2013] (where the optimal mean is known as well as a lower bound on the smallest gap) and we
show that in this case the regret of Thompson Sampling is in fact uniformly bounded over time, thus
showing that Thompson Sampling can greatly take advantage of the nice properties of these priors.

1 Introduction

In this paper we are interested in the Bayesian multi-armed bandit problem which can be described as follows. Let π0

be a known distribution over some set Θ, and let θ be a random variable distributed according to π0. For i ∈ [K], let
(Xi,s)s≥1 be identically distributed random variables taking values in [0, 1] and which are independent conditionally
on θ. Denote µi(θ) := E(Xi,1|θ). Consider now an agent facing K actions (or arms). At each time step t = 1, . . . n,
the agent pulls an arm It ∈ [K]. The agent receives the reward Xi,s when he pulls arm i for the sth time. The arm
selection is based only on past observed rewards and potentially on an external source of randomness. More formally,
let (Us)s≥1 be an i.i.d. sequence of random variables uniformly distributed on [0, 1], and let Ti(s) =

∑s
t=1 1It=i,

then It is a random variable measurable with respect to σ(I1, X1,1, . . . , It−1, XIt−1,TIt−1
(t−1), Ut). We measure the

performance of the agent through the Bayesian regret defined as

BRn = E
n∑
t=1

(
max
i∈[K]

µi(θ)− µIt(θ)
)
,

where the expectation is taken with respect to the parameter θ, the rewards (Xi,s)s≥1, and the external source of
randomness (Us)s≥1. We will also be interested in the individual regret Rn(θ) which is defined similarly except that
θ is fixed (instead of being integrated over π0). When it is clear from the context we drop the dependency on θ in the
various quantities defined above.

Given a prior π0 the problem of finding an optimal strategy to minimize the Bayesian regret BRn is a well defined
optimization problem and as such it is merely a computational problem. On the other hand the point of view initially
developed in Robbins [1952] leads to a learning problem. In this latter view the agent’s strategy must have a low
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regret Rn(θ) for any θ ∈ Θ. Both formulations of the problem have a long history and we refer the interested
reader to Bubeck and Cesa-Bianchi [2012] for a survey of the extensive recent literature on the learning setting.
In the Bayesian setting a major breakthrough was achieved in Gittins [1979] where it was shown that when the
prior distribution takes a product form an optimal strategy is given by the Gittins indices (which are relatively easy
to compute). The product assumption on the prior means that the reward processes (Xi,s)s≥1 are independent
across arms. In the present paper we are precisely interested in the situations where this assumption is not satisfied.
Indeed we believe that one of the strength of the Bayesian setting is that one can incorporate prior knowledge on
the arms in very transparent way. A prototypical example that we shall consider later on in this paper is when
one knows the distributions of the arms up to a permutation, in which case the reward processes are strongly dependent.

In general without the product assumption on the prior it seems hopeless (from a computational perspective) to look
for the optimal Bayesian strategy. Thus, despite being in a Bayesian setting, it makes sense to view it as a learning
problem and to evaluate the agent’s performance through its Bayesian regret. In this paper we are particularly interested
in studying the Thompson Sampling strategy which was proposed in the very first paper on the multi-armed bandit
problem Thompson [1933]. This strategy can be described very succinctly: let πt be the posterior distribution on
θ given the history Ht = (I1, X1,1, . . . , It−1, XIt−1,TIt−1

(t−1)) of the algorithm up to the beginning of round t.

Then Thompson Sampling first draws a parameter θ(t) from πt (independently from the past given πt) and it pulls
It ∈ argmaxi∈[K] µi(θ

(t)).

Recently there has been a surge of interest in this simple policy, mainly because of its flexibility to incorporate prior
knowledge on the arms, see for example Chapelle and Li [2011]. For a long time the theoretical properties of Thomp-
son Sampling remained elusive. The specific case of binary rewards with a Beta prior is now very well understood
thanks to the papers Agrawal and Goyal [2012a], Kaufmann et al. [2012], Agrawal and Goyal [2012b]. However as
we pointed out above here we are interested in proving regret bounds for the more realistic scenario where one runs
Thompson Sampling with a hand-tuned prior distribution, possibly very different from a Beta prior. The first result in
this spirit was obtained very recently by Russo and Roy [2013] who showed that for any prior distribution π0 Thomp-
son Sampling always satisfies BRn ≤ 5

√
nK log n. A similar bound was proved in Agrawal and Goyal [2012b] for

the specific case of Beta prior1. Our first contribution is to show in Section 2 that the extraneous logarithmic factor in
these bounds can be removed by using ideas reminiscent of the MOSS algorithm of Audibert and Bubeck [2009].

Our second contribution is to show that Thompson Sampling can take advantage of the properties of some non-trivial
priors to attain much better regret guarantees. More precisely in Section 3 and 4 we consider the setting of Bubeck
et al. [2013] (which we call the BPR setting) where µ∗ and ε > 0 are known values such that for any θ ∈ Θ, first there
is a unique best arm {i∗(θ)} = argmaxi∈[K] µi(θ), and furthermore

µi∗(θ)(θ) = µ∗, and ∆i(θ) := µi∗(θ)(θ)− µi(θ) ≥ ε,∀i 6= i∗(θ).

In other words the value of the best arm is known as well as a non-trivial lower bound on the gap between the values
of the best and second best arms. For this problem a new algorithm was proposed in Bubeck et al. [2013] (which we
call the BPR policy), and it was shown that the BPR policy satisfies

Rn(θ) = O

 ∑
i6=i∗(θ)

log(∆i(θ)/ε)

∆i(θ)
log log(1/ε)

 ,∀θ ∈ Θ,∀n ≥ 1.

Thus the BPR policy attains a regret uniformly bounded over time in the BPR setting, a feature that standard bandit
algorithms such as UCB of Auer et al. [2002] cannot achieve. It is natural to view the assumptions of the BPR
setting as a prior over the reward distributions and to ask what regret guarantees attains Thompson Sampling in that
situation. More precisely we consider Thompson Sampling with Gaussian reward distributions and uniform prior over
the possible range of parameters. We then prove individual regret bounds for any sub-Gaussian distributions (similarly
to Bubeck et al. [2013]). We obtain that Thompson Sampling uses optimally the prior information in the sense that
it also attains uniformly bounded over time regret. Furthermore as an added bonus we remove the extraneous log-log
factor of the BPR policy’s regret bound.

1Note however that the result of Agrawal and Goyal [2012b] applies to the individual regret Rn(θ) while the result of Russo
and Roy [2013] only applies to the integrated Bayesian regret BRn.
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The results presented in Section 3 and 4 can be viewed as a first step towards a better understanding of prior-dependent
regret bounds for Thompson Sampling. Generalizing these results to arbitrary priors is a challenging open problem
which is beyond the scope of our current techniques.

2 Optimal prior-free regret bound for Thompson Sampling

In this section we prove the following result.

Theorem 1 For any prior distribution π0 over reward distributions in [0, 1], Thompson Sampling satisfies

BRn ≤ 14
√
nK.

Remark that the above result is unimprovable in the sense that there exist prior distributions π0 such that for any
algorithm one has Rn ≥ 1

20

√
nK (see e.g. [Theorem 3.5, Bubeck and Cesa-Bianchi [2012]]). This theorem also

implies an optimal rate of identification for the best arm, see Bubeck et al. [2009] for more details on this.

Proof We decompose the proof into three steps. We denote i∗(θ) ∈ argmaxi∈[K] µi(θ), in particular one has
It = i∗(θ(t)).

Step 1: rewriting of the Bayesian regret in terms of upper confidence bounds. This step is given by [Proposition
1, Russo and Roy [2013]] which we reprove for the sake of completeness. Let Bi,t be a random variable measurable
with respect to σ(Ht). Note that by definition θ(t) and θ are identically distributed conditionally on Ht. This implies
by the tower rule:

EBi∗(θ),t = EBi∗(θ(t)),t = EBIt,t.
Thus we obtain:

E
(
µi∗(θ)(θ)− µIt(θ)

)
= E

(
µi∗(θ)(θ)−Bi∗(θ),t

)
+ E (BIt,t − µIt(θ)) .

Inspired by the MOSS strategy of Audibert and Bubeck [2009] we will now take

Bi,t = µ̂i,Ti(t−1) +

√√√√ log+

(
n

KTi(t−1)

)
Ti(t− 1)

,

where µ̂i,s = 1
s

∑s
t=1Xi,t, and log+(x) = log(x)1x≥1. In the following we denote δ0 = 2

√
K
n . From now on we

work conditionally on θ and thus we drop all the dependency on θ.

Step 2: control of E
(
µi∗(θ)(θ)−Bi∗(θ),t|θ

)
. By a simple integration of the deviations one has

E (µi∗ −Bi∗,t) ≤ δ0 +

∫ 1

δ0

P(µi∗ −Bi∗,t ≥ u)du.

Next we extract the following inequality from Audibert and Bubeck [2010] (see p2683–2684), for any i ∈ [K],

P(µi −Bi,t ≥ u) ≤ 4K

nu2
log

(√
n

K
u

)
+

1

nu2/K − 1
.

Now an elementary integration gives∫ 1

δ0

4K

nu2
log

(√
n

K
u

)
du =

[
−4K

nu
log

(
e

√
n

K
u

)]1

δ0

≤ 4K

nδ0
log

(
e

√
n

K
δ0

)
= 2(1 + log 2)

√
K

n
,

and ∫ 1

δ0

1

nu2/K − 1
du =

[
−1

2

√
K

n
log

(√
n
Ku+ 1√
n
Ku− 1

)]1

δ0

≤ 1

2

√
K

n
log

(√
n
K δ0 + 1√
n
K δ0 − 1

)
=

log 3

2

√
K

n
.
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Thus we proved: E
(
µi∗(θ)(θ)−Bi∗(θ),t|θ

)
≤
(

2 + 2(1 + log 2) + log 3
2

)√
K
n ≤ 6

√
K
n .

Step 3: control of
∑n
t=1 E (BIt,t − µIt(θ)|θ). We start again by integrating the deviations:

E
n∑
t=1

(BIt,t − µIt) ≤ δ0n+

∫ +∞

δ0

n∑
t=1

P(BIt,t − µIt ≥ u)du.

Next we use the following simple inequality:

n∑
t=1

1{BIt,t − µIt ≥ u} ≤
n∑
s=1

K∑
i=1

1

µ̂i,s +

√
log+

(
n
Ks

)
s

− µi ≥ u

 ,

which implies
n∑
t=1

P(BIt,t − µIt ≥ u) ≤
K∑
i=1

n∑
s=1

P

µ̂i,s +

√
log+

(
n
Ks

)
s

− µi ≥ u

 .

Now for u ≥ δ0 let s(u) = d3 log
(
nu2

K

)
/u2e where dxe is the smallest integer large than x. Let c = 1 − 1√

3
. It is

easy to see that one has:

n∑
s=1

P

µ̂i,s +

√
log+

(
n
Ks

)
s

− µi ≥ u

 ≤ 3 log
(
nu2

K

)
u2

+

n∑
s=s(u)

P (µ̂i,s − µi ≥ cu) .

Using an integration already done in Step 2 we have∫ +∞

δ0

3 log
(
nu2

K

)
u2

≤ 3(1 + log(2))

√
n

K
≤ 5.1

√
n

K
.

Next using Hoeffding’s inequality and the fact that the rewards are in [0, 1] one has for u ≥ δ0
n∑

s=s(u)

P (µ̂i,s − µi ≥ cu) ≤
n∑

s=s(u)

exp(−2sc2u2)1u≤1/c ≤
exp(−12c2 log 2)

1− exp(−2c2u2)
1u≤1/c.

Now using that 1− exp(−x) ≥ x− x2/2 for x ≥ 0 one obtains∫ 1/c

δ0

1

1− exp(−2c2u2)
du =

∫ 1/(2c)

δ0

1

1− exp(−2c2u2)
du+

∫ 1/c

1/(2c)

1

1− exp(−2c2u2)
du

≤
∫ 1/(2c)

δ0

1

2c2u2 − 2c4u4
du+

1

2c(1− exp(−1/2))

≤
∫ 1/(2c)

δ0

2

3c2u2
du+

1

2c(1− exp(−1/2))

=
2

3c2δ0
− 4

3c
+

1

2c(1− exp(−1/2))

≤ 1.9

√
n

K
.

Putting the pieces together we proved

E
n∑
t=1

(BIt,t − µIt) ≤ 7.6
√
nK,

which concludes the proof together with the results of Step 1 and Step 2.
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3 Thompson Sampling in the two-armed BPR setting

Following [Section 2, Bubeck et al. [2013]] we consider here the two-armed bandit problem with sub-Gaussian reward
distributions (that is they satisfy Eeλ(X−µ) ≤ eλ

2/2 for all λ ∈ R) and such that one reward distribution has mean µ∗
and the other one has mean µ∗ −∆ where µ∗ and ∆ are known values.

In order to derive the Thompson Sampling strategy for this problem we further assume that the reward distributions
are in fact Gaussian with variance 1. In other words let Θ = {θ1, θ2}, π0(θ1) = π0(θ2) = 1/2, and under θ1 one has
X1,s ∼ N (µ∗, 1) and X2,s ∼ N (µ∗ − ∆, 1) while under θ2 one has X2,s ∼ N (µ∗, 1) and X1,s ∼ N (µ∗ − ∆, 1).
Then a straightforward computation (using Bayes rule and induction) shows that one has for some normalizing constant
c > 0:

πt(θ1) = c exp

−1

2

T1(t−1)∑
s=1

(µ∗ −X1,s)
2 − 1

2

T2(t−1)∑
s=1

(µ∗ −∆−X2,s)
2

 ,

πt(θ2) = c exp

−1

2

T1(t−1)∑
s=1

(µ∗ −∆−X1,s)
2 − 1

2

T2(t−1)∑
s=1

(µ∗ −X2,s)
2

 .

Recall that Thompson Sampling draws θ(t) from πt and then pulls the best arm for the environment θ(t). Observe
that under θ1 the best arm is arm 1 and under θ2 the best arm is arm 2. In other words Thompson Sampling draws It
at random with the probabilities given by the posterior πt. This leads to a general algorithm for the two-armed BPR
setting with sub-Gaussian reward distributions that we summarize in Figure 1. The next result shows that it attains
optimal performances in this setting up to a numerical constant (see Bubeck et al. [2013] for lower bounds), for any
sub-Gaussian reward distribution (not necessarily Gaussian) with largest mean µ∗ and gap ∆.

For rounds t ∈ {1, 2}, select arm It = t.
For each round t = 3, 4, . . . play It at random from pt where

pt(1) = c exp

−1

2

T1(t−1)∑
s=1

(µ∗ −X1,s)
2 − 1

2

T2(t−1)∑
s=1

(µ∗ −∆−X2,s)
2

 ,

pt(2) = c exp

−1

2

T1(t−1)∑
s=1

(µ∗ −∆−X1,s)
2 − 1

2

T2(t−1)∑
s=1

(µ∗ −X2,s)
2

 ,

and c > 0 is such that pt(1) + pt(2) = 1.

Figure 1: Policy inspired by Thompson Sampling for the two-armed BPR setting.

Theorem 2 The policy of Figure 1 has regret bounded as Rn ≤ ∆ + 578
∆ , uniformly in n.

Note that we did not try to optimize the numerical constant in the above bound. Figure 2 shows an empirical com-
parison of the policy of Figure 1 with Policy 1 of Bubeck et al. [2013]. Note in particular that a regret bound of
order 16/∆ was proved for the latter algorithm and the (limited) numerical simulation presented here suggests that
Thompson Sampling outperforms this strategy.

Proof Without loss of generality we assume that arm 1 is the optimal arm, that is µ1 = µ∗ and µ2 = µ∗ − ∆. Let
µ̂i,s = 1

s

∑s
t=1Xi,t, γ̂1,s = µ1 − µ̂1,s and γ̂2,s = µ̂2,s − µ2. Note that large (positive) values of γ̂1,s or γ̂2,s might

mislead the algorithm into bad decisions, and we will need to control what happens in various regimes for these γ
coefficients. We decompose the proof into three steps.
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Figure 2: Empirical comparison of the policy of Figure 1 and Policy 1 of Bubeck et al. [2013] on Gaussian reward distributions
with variance 1.

Step 1. This first step will be useful in the rest of the analysis, it shows how the probability ratio of a bad pull over a
good pull evolves as a function of the γ coefficients introduced above. One has:

pt(2)

pt(1)
= exp

−1

2

T1(t−1)∑
s=1

[
(µ2 −X1,s)

2 − (µ1 −X1,s)
2

]
− 1

2

T2(t−1)∑
s=1

[
(µ1 −X2,s)

2 − (µ2 −X2,s)
2

]
= exp

(
−T1(t− 1)

2

[
µ2

2 − µ2
1 − 2(µ2 − µ1)µ̂1,T1(t−1)

]
− T2(t− 1)

2

[
µ2

1 − µ2
2 − 2(µ1 − µ2)µ̂2,T2(t−1)

])
= exp

(
−T1(t− 1)

2

[
∆2 − 2∆(µ1 − µ̂1,T1(t−1))

]
− T2(t− 1)

2

[
∆2 − 2∆(µ̂2,T2(t−1) − µ2)

])
= exp

(
− t∆

2

2
+ T1(t− 1)∆γ̂1,T1(t−1) + T2(t− 1)∆γ̂2,T2(t−1)

)
.

Step 2. We decompose the regret Rn as follows:

Rn
∆

= 1 + E
n∑
t=3

1{It = 2}

= 1 + E
n∑
t=3

1

{
γ̂2,T2(t−1) >

∆

4
, It = 2

}
+ E

n∑
t=3

1

{
γ̂2,T2(t−1) ≤

∆

4
, γ̂1,T1(t−1) ≤

∆

4
, It = 2

}

+E
n∑
t=3

1

{
γ̂2,T2(t−1) ≤

∆

4
, γ̂1,T1(t−1) >

∆

4
, It = 2

}
.

We use Hoeffding’s inequality to control the first term:

E
n∑
t=3

1

{
γ̂2,T2(t−1) >

∆

4
, It = 2

}
≤ E

n∑
s=1

1

{
γ̂2,s >

∆

4

}
≤

n∑
s=1

exp

(
−s∆

2

32

)
≤ 32

∆2
.
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For the second term, using the rewriting of Step 1 as an upper bound on pt(2), one obtains:

E
n∑
t=3

1

{
γ̂2,T2(t−1) ≤

∆

4
, γ̂1,T1(t−1) ≤

∆

4
, It = 2

}
=

n∑
t=3

E
(
pt(2)1

{
γ̂2,T2(t−1) ≤

∆

4
, γ̂1,T1(t−1) ≤

∆

4

})

≤
n∑
t=3

exp

(
− t∆

2

4

)
≤ 4

∆2
.

The third term is more difficult to control, and we further decompose the corresponding event as follows:{
γ̂2,T2(t−1) ≤

∆

4
, γ̂1,T1(t−1) >

∆

4
, It = 2

}
⊂
{
γ̂1,T1(t−1) >

∆

4
, T1(t− 1) > t/4

}
∪
{
γ̂2,T2(t−1) ≤

∆

4
, It = 2, T1(t− 1) ≤ t/4

}
.

The cumulative probability of the first event in the above decomposition is easy to control thanks to Hoeffding’s
maximal inequality2 which states that for any m ≥ 1 and x > 0 one has

P(∃ 1 ≤ s ≤ m s.t. s γ̂1,s ≥ x) ≤ exp

(
− x2

2m

)
.

Indeed this implies

P
(
γ̂1,T1(t−1) >

∆

4
, T1(t− 1) > t/4

)
≤ P

(
∃ 1 ≤ s ≤ t s.t. s γ̂1,s >

∆t

16

)
≤ exp

(
− t∆

2

512

)
,

and thus

E
n∑
t=3

1

{
γ̂1,T1(t−1) >

∆

4
, T1(t− 1) > t/4

}
≤ 512

∆2
.

It only remains to control the term

E
n∑
t=3

1

{
γ̂2,T2(t−1) ≤

∆

4
, It = 2, T1(t− 1) ≤ t/4

}
=

n∑
t=3

E
(
pt(2)1

{
γ̂2,T2(t−1) ≤

∆

4
, T1(t− 1) ≤ t/4

})

≤
n∑
t=3

E exp

(
− t∆

2

4
+ ∆ max

1≤s≤t/4
sγ̂1,s

)
,

where the last inequality follows from Step 1. The last step is devoted to bounding from above this last term.

Step 3. By integrating the deviations and using again Hoeffding’s maximal inequality one obtains

E exp

(
∆ max

1≤s≤t/4
sγ̂1,s

)
≤ 1 +

∫ +∞

1

P

(
max

1≤s≤ t
4

sγ̂1,s ≥
log x

∆

)
dx ≤ 1 +

∫ +∞

1

exp

(
−2(log x)2

∆2t

)
dx.

Now, straightforward computation gives
n∑
t=3

exp

(
− t∆

2

4

)(
1 +

∫ +∞

1

exp

(
−2(log x)2

∆2t

)
dx

)
≤

n∑
t=3

exp

(
− t∆

2

4

)(
1 +

√
π∆2t

2
exp

(
t∆2

8

))

≤ 4

∆2
+

∫ +∞

0

√
π∆2t

2
exp

(
− t∆

2

8

)
dt

≤ 4

∆2
+

16
√
π

∆2

∫ +∞

0

√
u exp(−u) du

≤ 30

∆2
.

2It is an easy exercise to verify that Azuma-Hoeffding holds for martingale differences with sub-Gaussian increments, which
implies Hoeffding’s maximal inequality for sub-Gaussian distributions.
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which concludes the proof by putting this together with the results of the previous step.

4 Optimal strategy for the BPR setting inspired by Thompson Sampling

In this section we consider the general BPR setting. That is the reward distributions are sub-Gaussian (they satisfy
Eeλ(X−µ) ≤ eλ

2/2 for all λ ∈ R), one reward distribution has mean µ∗, and all the other means are smaller than
µ∗ − ε where µ∗ and ε are known values.

Similarly to the previous section we assume that the reward distributions are Gaussian with variance 1 for the derivation
of the Thompson Sampling strategy (but we do not make this assumption for the analysis of the resulting algorithm).
Then the set of possible parameters is described as follows:

Θ = ∪Ki=1Θi where Θi = {θ ∈ RK s.t. θi = µ∗ and θj ≤ µ∗ − ε for all j 6= i}.
Assuming a uniform prior over the index of the best arm, and a prior λ over the mean of a suboptimal arm one obtains
by Bayes rule that the probability density function of the posterior is given by:

dπt(θ) ∝ exp

−1

2

K∑
j=1

Tj(t−1)∑
s=1

(Xj,s − θj)2

 K∏
j=1,j 6=i∗(θ)

dλ(θj).

Now remark that with Thompson Sampling arm i is played at time t if and only if θ(t) ∈ Θi. In other words It is
played at random from probability pt where

pt(i) = πt(Θi) ∝ exp

−1

2

Ti(t−1)∑
s=1

(Xi,s − µ∗)2

∏
j 6=i

∫ µ∗−ε

−∞
exp

−1

2

Tj(t−1)∑
s=1

(Xj,s − v)2

 dλ(v)


∝

exp
(
− 1

2

∑Ti(t−1)
s=1 (Xi,s − µ∗)2

)
∫ µ∗−ε
−∞ exp

(
− 1

2

∑Ti(t−1)
s=1 (Xi,s − v)2

)
dλ(v)

.

Taking inspiration from the above calculation we consider the following policy, where λ is the Lebesgue measure and
we assume a slightly larger value for the variance (this is necessary for the proof).

For rounds t ∈ [K], select arm It = t.
For each round t = K + 1,K + 2, . . . play It at random from pt where

pt(i) = c
exp

(
− 1

3

∑Ti(t−1)
s=1 (Xi,s − µ∗)2

)
∫ µ∗−ε
−∞ exp

(
− 1

3

∑Ti(t−1)
s=1 (Xi,s − v)2

)
dv

,

and c > 0 is such that
∑K
i=1 pt(i) = 1.

Figure 3: Policy inspired by Thompson Sampling for the BPR setting.

The following theorem shows that this policy attains the best known performance for the BPR setting, shaving off a
log-log term in the regret bound of the BPR policy.

Theorem 3 The policy of Figure 3 has regret bounded as Rn ≤
∑
i:∆i>0

(
∆i + 80+log(∆i/ε)

∆i

)
, uniformly in n.

The proof of this result is fairly technical and it is deferred to the supplementary material.
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