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Abstract

We study the problem of finding the most mutually correlated arms among many arms.
We show that adaptive arms sampling strategies can have significant advantages over the non-
adaptive uniform sampling strategy. Our proposed algorithms rely on a novel correlation esti-
mator. The use of this accurate estimator allows us to get improved results for a wide range of
problem instances.

1 Introduction
We define the most correlated arms identification problem as follows. Let K be an integer and
X t = (X1,t, . . . , XK,t)

>, t = 1, 2, . . . be a sequence of independent, identically distributed Gaus-
sian random vectors with zero mean and an unknown covariance matrix Σ = (σij)i,j∈[K]. We
use PΣ to denote the corresponding probability measure (on the natural probability space for this
model) and make the following assumptions on the entries of Σ: ∀i, j ∈ [K], σii = 1 and σij ≥ 0.
Under these assumptions, Σ can also be seen as the correlation matrix. Consider now an agent
facing K arms. At each time step t = 1, 2, . . ., the agent selects a subset of arms At ⊂ [K] and ob-
serves the corresponding values in X t, denoted by X t

At
= {Xi,t, i ∈ At}. The agent is allowed to

employ an adaptive sampling strategy, that is, the selection of At may depend on the past observa-
tions Ht−1 = {As, Xs

As
}s∈[t−1]. This is in contrast to the non-adaptive uniform sampling strategy,

where At is always chosen to be [K]. The task of the agent is to return as rapidly as possible a
subset of h most mutually correlated arms. More precisely, the agent is interested in finding

S∗ ∈ argmax
S⊂[K],|S|=h

∑
j,`∈S,j 6=`

σj,`.

Throughout this paper, we assume that there is an unique solution S∗ to the above problem and
we call this unique solution the optimal subset. Furthermore an arm i ∈ [K] is called optimal if it
belongs to S∗ and is called suboptimal otherwise.
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The goal of this paper is to devise algorithms that output reliably S∗ while using as few samples
as possible. Throughout this paper, the word sample is reserved for the realized value of a real-
valued random variable. In comparison, the sampling outcome of a multi-dimensional random
vector is called a sample vector. Following the tradition of the adaptive-exploration literature, we
study our problem in two different settings.
Fixed-Budget: In the fixed-budget setting, we are given a fixed budget of n samples and are asked
to output a subset of arms Ŝ with size h as soon as the sampling budget has been used up. The task
here is to devise a sampling and decision strategy that achieves a small probability of returning a
wrong subset, that is, one wants to minimize PΣ(Ŝ 6= S∗).
Fixed-Confidence: In the fixed-confidence setting, we are given a fixed confidence level δ > 0
and there is no explicit budget limitation. We look for a sampling, stopping and decision strategy
that returns S∗ with probability at least 1−δ when it stops, regardless of the underlying correlation
matrix Σ. The performance of the strategy is evaluated by the number of samples obtained before
it terminates, either in expectation or with high probability.

In Section 4 and 5, we present two algorithms SR-C and SE-C that are designed for the above
two settings respectively. The main innovation in our algorithms is the use of an accurate correla-
tion estimator, called difference-based correlation estimator. In Section 2, we define and analyze
this new estimator and argue that it can substantiate in an optimal way the intuition that the estima-
tion task becomes easier when the correlation is close to 1, a feature that the classical correlation
estimator can not attain. Inspired by the statistical properties of the difference-based correlation
estimator, we define the suboptimality ratio of B with respect to A (for the correlation matrix Σ)
as

DΣ(A,B) =

∑
(j,`)∈B2\(A∩B)2,j 6=`(1− σj,`)∑
(j,`)∈A2\(A∩B)2,j 6=`(1− σj,`)

for two subsets of arms A and B with size h and with the convention that 0
0

= 1. This ratio is a
measure of how uncorrelated the arms in B are compared to the arms in A. Note that
DΣ(A,B) ≥ 1 if only if

∑
j,`∈A,j 6=` σj,` ≥

∑
j,`∈B,j 6=` σj,`. Now for an arm i ∈ [K], denote by Ri,Σ

the suboptimality ratio of the arm i with respect to the optimal set S∗, defined as

Ri,Σ = min
i∈B⊂[K],|B|=h

DΣ(S∗, B).

It is clear that Ri,Σ = 1 if arm i is optimal and Ri,Σ > 1 otherwise. Therefore, the order statistics
of Ri,Σ satisfies

1 = R(1),Σ = . . . = R(h),Σ < R(h+1),Σ ≤ . . . ≤ R(K),Σ.

These suboptimality ratios determine the number of times the suboptimal arms need to be drawn
in our algorithms. More precisely, define the α function as α(θ) = 1

2
(log θ− 1 + 1

θ
), for θ ≥ 1. We

consider in Section 3 the non-adaptive sampling setting where we draw each arm an equal number
of times and show that we need Θ̃

(
K

α(R(h+1),Σ)
+K

)
samples1 to reliably identify S∗ by providing

a matching upper and lower bound. Furthermore, we prove in Section 4 and 5 that SR-C and SE-C

1The notation Θ̃, Õ hides a logarithmic factor.
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need at most Õ(HC +K) samples to find S∗ where HC is defined as

HC =
h

α
(
R(h+1),Σ

) +
K∑

i=h+1

1

α
(
R(i),Σ

) .
Note that HC can be much smaller than K

α(R(h+1),Σ)
for a wide range of Σ, especially when the en-

tries of Σ are inhomogeneous. This shows that adaptive sampling strategies could have significant
advantages over non-adaptive uniform sampling. We close the paper with a discussion in Section
6 of possible improvements and challenges.

Remark: Note that the function α : [1,+∞) → R defined above is a positive, strictly increasing
function. Moreover, α(θ) = Θ ((1− θ)2) when θ → 1 and α(θ) = Θ (log(θ)) when θ → +∞. It
follows from these facts that for any q > 0, there exists two constants c1(q), c2(q) > 0 that only
depend on q such that c1(q)α(θ) ≤ α(θq) ≤ c2(q)α(θ) for any θ ≥ 1.

Related Work
The problem we study in this paper is similar in spirit to the best arm identification problem in
multi-armed bandits. In the latter problem, an agent repeatedly selects an arm and observes a sam-
ple reward drawn from the arm’s reward distribution, and then he is asked to return the arm with the
highest mean reward. The Successive Elimination algorithm in Even-Dar et al. [2006] was shown
to find the single best arm i∗ with high probability with Õ

(∑
i 6=i∗

1
∆2
i

)
samples where ∆i is the

gap between the mean reward of the best arm and that of a suboptimal arm i. Bubeck et al. [2009]
and Audibert et al. [2010] study the same problem under the fixed-budget setting, in particular the
Successive Rejects procedure of Audibert et al. [2010] was shown to require essentially as many
samples as Successive Elimination. The algorithms that we propose in Sections 4 and 5 for most
correlated arms identification are inspired by these algorithms for best arm identification. In partic-
ular they share the same high-level idea that the more suboptimal an arm is with respect to the best
arms, the less samples we need to distinguish it from the best arms. In the fixed-budget setting, this
is done by distributing the sample budget to the arms in an adaptive way based on their correlation
estimates. For the fixed-confidence setting we build confidence intervals on correlations among
arms and uniformly sample all the arms until we have enough confidence to identify and exclude
some suboptimal arms.

Our work is different from Arias-Castro et al. [2012a], Arias-Castro et al. [2012b] and Castro
et al. [2013] where the task is the detection of the presence of a sparse and correlated subset
of components from samples of a high-dimensional Gaussian distribution. Their work focuses
on determining whether there is a correlated subset while the task in this paper is to accurately
identify the subset with largest mutual correlations. Perhaps more importantly, on the contrary to
these work, our algorithms adapt to the potential heterogeneity in the correlation matrix Σ.

2 Correlation Estimators
In this section, we describe a new correlation estimator, called difference-based correlation esti-
mator. It is intuitive that the task of correlation estimation becomes easier when the correlation is
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close to 1. We are going to see that the classical correlation estimator fails to capture this intuition
while the difference-based correlation estimator can quantify it in an optimal way. The use of this
novel estimator will allow us to largely reduce the sample complexity of our algorithms for a wide
range of correlation matrices Σ.

2.1 Classical Correlation Estimator
For j 6= ` ∈ [K], consider the classical correlation estimator defined as

σ̃j,`,t =
1

t

t∑
s=1

Xj,sXl,s =
1

t

(
t∑

s=1

(Xj,s +Xl,s)
2

4
−

t∑
s=1

(Xj,s −Xl,s)
2

4

)

= σj` +

(
1 + σj`

2

(
1

t

t∑
s=1

(Xj,s +Xl,s)
2

2(1 + σj`)
− 1

)
− 1− σj`

2

(
1

t

t∑
s=1

(Xj,s −Xl,s)
2

2(1− σj`)
− 1

))
.

By observing that
∑t

s=1
(Xj,s+Xl,s)

2

2(1+σj`)
and

∑t
s=1

(Xj,s−Xl,s)2

2(1−σj`)
are independent, chi-square distributed

with t degrees of freedom, we see that the magnitude of the fluctuation of σ̃j,`,t around σj` only has
a very mild dependency on σj`. Its estimation accuracy improves only slightly even when σj` = 1.

2.2 Difference-Based Correlation Estimator
Our main idea for getting a good correlation estimator is to draw inspiration from the likelihood
ratio tests. Assume that K = 2 and consider the following testing problem.

(T )

{
H0 : Σ = Σ0

H1 : Σ = Σ1

where Σ0 =
(

1 ρ0
ρ0 1

)
and Σ1 =

(
1 ρ1
ρ1 1

)
with 1 > ρ0 > ρ1 ≥ 0. Since the likelihood ratio test is

an optimal test, it must be able to distinguish H0 and H1 with high accuracy in the case when ρ0 is
close to 1 while ρ1 is bounded away from 1. This suggests that the study of the likelihood ratio test
may be helpful in constructing a good correlation estimator. Denote by fQ the probability density
function of a probability distribution Q. It is easy to verify that the likelihood ratio statistics of the
testing problem (T ) can be written as

Λ((Xs)s=1,...,t) =

fN (0,(1+ρ0)It)

((
X1,s+X2,s√

2

)
s=1,...,t

)
fN (0,(1+ρ1)It)

((
X1,s+X2,s√

2

)
s=1,...,t

) · fN (0,(1−ρ0)It)

((
X1,s−X2,s√

2

)
s=1,...,t

)
fN (0,(1−ρ1)It)

((
X1,s−X2,s√

2

)
s=1,...,t

) .
The two fractions above can be seen as the likelihood ratio statistics of the following two testing
problems.

(T1)

{
H0 : X1,s+X2,s√

2
∼ N (0, 1 + ρ0)

H1 : X1,s+X2,s√
2
∼ N (0, 1 + ρ1)

, (T2)

{
H0 : X1,s−X2,s√

2
∼ N (0, 1− ρ0)

H1 : X1,s−X2,s√
2
∼ N (0, 1− ρ1)

.
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Now observe that the testing problem (T2) is always easier than the problem (T1) since we always
have 1+ρ0

1+ρ1
≤ 1−ρ1

1−ρ0
. This suggests that the hardness of the problem stays roughly the same if we

replace the original problem (T ) by problem (T2). Moreover, for problem (T2), it is natural to
consider tests based on the test statistics 1

t

∑t
s=1

(X1,s−X2,s)2

2
. This leads us to define the difference-

based correlation estimator for σj` with j 6= ` ∈ [K] as

σ̂j,`,t = 1− 1

t

t∑
s=1

(Xj,s −Xl,s)
2

2
.

To analyze its statistical properties, we further define the random variable Yj,`,t as

Yj,`,t =
1

1− σj`

t∑
s=1

(Xj,s −Xl,s)
2

2

with the convention that 0
0

= 1. Then Yj,`,t follows a chi-square distribution with t degrees of
freedom and we have the following relations

1− σ̂j,`,t = (1− σj`)
Yj,`,t
t

and σ̂j,`,t = σj,` − (1− σj`)(
Yj,`,t
t
− 1).

For a fixed number of samples, the deviation of the difference-based correlation estimator from
the true correlation is proportional to 1− σj`. In other words, the accuracy of estimation increases
when σj` approaches 1.

2.3 Optimality of the Difference-Based Correlation Estimator
To illustrate the strength of the difference-based correlation estimator, we return to the testing
problem (T ). The testing accuracy of a test ϕ is measured by its maximal risk, defined as

Rt(ϕ) = max (PΣ0(ϕ = 1),PΣ1(ϕ = 0)) .

Now, define R = 1−ρ1

1−ρ0
> 1 and consider the test ϕ∗ which outputs 0 if 1− σ̂1,2,t ≤ (1− ρ0)R

1
2 and

outputs 1 otherwise. Using Lemma 5 in the Appendix, one has the following upper bound on the
maximal risk of ϕ∗,

Rt(ϕ
∗) ≤ exp

(
−t · α(R

1
2 )
)
≤ exp (−c1(1/2) · t · α(R)) .

On the other hand, using Lemma 6 and Lemma 7 in the Appendix, we know that the maximum
risk for any test ϕ is lower bounded as follows.

Rt(ϕ) ≥ 1

4
exp

(
−KL

(
N (0,Σ0)⊗t,N (0,Σ1)⊗t

))
=

1

4
exp (−t ·KL (N (0,Σ0),N (0,Σ1))) ≥ 1

4
exp (−ct · α(R))

where c is an universal constant. We conclude that the test ϕ∗ using the difference-based correlation
estimator is an optimal test in the sense that it needsO( 1

α(R)
) samples to reliably identify the correct

Σ and no test can do better.
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3 Non-Adaptive Sampling Setting
In this section, we study the most correlated arms identification problem under the classical non-
adaptive setting where we have access to m full sample vectors (X t)t=1,...,m (this corresponds
to n = Km samples of arms). We show that a naive decision policy based on the difference-
based correlation estimator needs n = Õ

(
K

α(R(h+1),Σ)
+K

)
samples to find S∗. We also provide

a matching lower bound (up to a logarithmic factor on K) on problem instances with a certain
correlation matrix structure.

3.1 Upper Bound
Consider the decision policy that simply outputs the empirically optimal subset Ŝ, as described in
Figure 1.

Input: m full samples (X t)t=1,...,m.
Output: Ŝ = arg maxS⊂[K],|S|=h

∑
j,`∈S,j 6=` σ̂j,`,m

Figure 1: A naive decision policy under the non-adaptive sampling setting.

Theorem 1 The probability of error of the decision policy in Figure 1 is bounded as

PΣ(Ŝ 6= S∗) ≤ K(K − 1) exp
(
−cm · α

(
R(h+1),Σ

))
where c is an universal constant.

Proof First, observe that if Ŝ 6= S∗, then ∑
(j,`)∈Ŝ2\(S∗∩Ŝ)2,j 6=`

(1− σj,`)

 ≥ R(h+1),Σ

 ∑
(j,`)∈S∗2\(S∗∩Ŝ)2,j 6=`

(1− σj,`)


However, by definition of S̃, one has ∑

(j,`)∈Ŝ2\(S∗∩Ŝ)2,j 6=`

(1− σ̂j,`,m)

 ≤
 ∑

(j,`)∈S∗2\(S∗∩Ŝ)2,j 6=`

(1− σ̂j,`,m)


Therefore, if Ŝ 6= S∗, then one of the following two events must hold true

{∃j 6= ` such that (1− σ̂j,`,m) ≥ R
1
2

(h+1),Σ(1− σj,`)}

{∃j 6= ` such that (1− σ̂j,`,m) ≤ R
− 1

2

(h+1),Σ(1− σj,`)}.
Therefore, using Lemma 5, one gets

PΣ(Ŝ 6= S∗) ≤ K(K−1) exp
(
−m · α

(
R

1
2

(h+1),Σ

))
≤ K(K−1) exp

(
−m · c1(

1

2
)α
(
R(h+1),Σ

))
which completes the proof.
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3.2 Lower Bound
Let 1 > ρh > ρh+1 ≥ . . . ≥ ρK and consider the correlation matrix Σ defined by

σj` =


1, if j = ` or j, ` < h

ρjρ`, if j 6= ` and j, ` ≥ h

ρ`, if j < h ≤ `

ρj, if j ≥ h > `

It is easy to verify that the optimal subset S∗ is [h] and for i ≥ h + 1, R(i),Σ = Ri,Σ = 1−ρi
1−ρh

. Now

let ρ′h+1 = 1 − (1−ρh)2

1−ρh+1
and define another correlation matrix Σ

′ which is constructed from Σ by
replacing ρh+1 by ρ′h+1 in the definition of Σ. By observing that ρ′h+1 > ρh, we see that the optimal
subset for Σ

′ is S∗
Σ′

= [h− 1] ∪ {h+ 1} and

R(h+1),Σ′ = Rh,Σ′ =
1− ρh

1− ρ′h+1

, R(i),Σ = Ri,Σ =
1− ρi

1− ρ′h+1

, for i ≥ h+ 2.

Note that R(i),Σ′ ≥ R(i),Σ for any i ≥ h + 1. So the identification problem with Σ
′ is always

easier than that with Σ. The following theorem shows that for any decision policy with uniform
sampling, its probability of error is at least Ω

(
exp

(
−cm · α(R(h+1),Σ)

))
under one of the two

problem instances with underlying correlation matrix Σ and Σ
′ .

Theorem 2 Let ϕ be a decision policy that outputs the subset ϕ((X t)t=1,...,m) when (X t)t=1,...,m

is observed. Then

max
(
PΣ(ϕ 6= S∗),PΣ′ (ϕ 6= S∗

Σ′
)
)
≥ 1

4
exp

(
−cm · α(R(h+1),Σ)

)
≥ 1

4
exp

(
−cm · α(R(h+1),Σ′ )

)
.

where c is an universal constant.

Proof The first inequality can be easily proved by using Lemma 6 and Lemma 8 in Appendix.
The second inequality is trivial.

4 Fixed-Budget Setting: Successive Rejects for Correlation
In this section, we present and analyze a new algorithm, SR-C (Successive Rejects for Correlation).
See Figure 2 for its complete description. SR-C proceeds by rounds. At the end of each round, it
computes an estimate for the suboptimality of each arm and rejects an arm that seems least likely
to be an optimal arm. And during the next round, it samples the subset of existing arms a certain
number of times. SR-C stops when there are only h arms left and outputs the set of remaining
arms. It is easy to verify that SR-C does not exceed the sample budget n (the total number of
samples it uses is n1 + · · · + nK−h−1 + (h + 1)nK−h). The following theorem shows that SR-C
needs at most Õ (HC +K) samples to find the optimal subset. More precisely, when the sample
budget n is of orderO(HC log(K)2), we have a non-trivial upper bound on the probability of error.
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Input: sample budget n.
Let S1 = [K], log(K

h
) = 1 +

∑K
i=h+1

1
i
, n0 = 0 and for k = 1, . . . , K − h, define

nk = d n−K − 1

log(K
h

)(K + 1− k)
e

For each round k = 1, . . . , K − h, do
(1) For t = nk−1 + 1, . . . , nk, choose At = Sk and sample At from X t.
(2) For each i ∈ Sk, compute Ui,k = maxA⊂Sk,|A|=h mini∈B⊂Sk,|B|=h D̂k(A,B) where

D̂k(A,B) =

∑
(j,`)∈B2\(A∩B)2,j 6=`(1− σ̂j,`,nk)∑
(j,`)∈A2\(A∩B)2,j 6=`(1− σ̂j,`,nk)

with the notation 0
0

= 1.
(3) Let ik = arg maxi∈Sk Ui,k and Sk+1 = Sk\{ik} .
Output: Ŝ = SK−h+1.

Figure 2: SR-C (Successive Rejects for Correlation) algorithm

Theorem 3 The probability of error of SR-C satisfies

PΣ(Ŝ 6= S∗) ≤ K3 exp

(
−c(n−K − 1)

log(K
h

)HC

)

where c is an universal constant.

Proof Without loss of generality, we assume that S∗ = [h] and

1 = R1,Σ = . . . = Rh,Σ < Rh+1,Σ ≤ . . . ≤ RK,Σ.

For k = 1, . . . , K − h, define the event

Gk =
⋂

j,`∈[K],j 6=`

{
R
− 1

4
K+1−k,Σ(1− σj,`) < 1− σ̂j,`,nk < R

1
4
K+1−k,Σ(1− σj,`)

}
and G = ∩k∈[K−h]Gk. G is the event when the correlation estimators are close to the true correla-
tions. Observe that when G occurs, the following inequalities hold true

R
− 1

2
K+1−k,ΣDΣ(A,B) < D̂k(A,B) < R

1
2
K+1−k,ΣDΣ(A,B).

The rest of the proof is organized into two steps.

Step One: In this step, we prove that when G occurs, SR-C always finds the optimal subset, i.e.
SK−h+1 = S∗. We do this by induction. Fix a k ∈ [K − h] and assume that none of the optimal
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arms have ever been rejected before the round k. We need to show that none of them are rejected
at the end of the round k.

First, there must exist a suboptimal arm i that belongs to {K + 1 − k, . . . , K} ∩ Sk since
|Sk| = K + 1− k. Then for any B such that i ∈ B ⊂ Sk, |B| = h, one has

D̂k(S∗, B) > R
− 1

2
K+1−k,ΣDΣ(S∗, B) ≥ R

1
2
K+1−k,Σ

where the last inequality follows from DΣ(S∗, B) ≥ Ri,Σ ≥ RK+1−k,Σ. Therefore, we have

Ui,k > R
1
2
K+1−k,Σ.

Next, for any A such that A ⊂ Sk, |A| = h, one has

D̂k(A, S∗) < R
1
2
K+1−k,ΣDΣ(A, S∗) ≤ R

1
2
K+1−k,Σ.

This shows that for any optimal arm i ∈ S∗, we have Ui,k < R
1
2
K+1−k,Σ < Ui,k. Thus, i is not

removed at the end of the round k.

Step Two: From step one, we know that the probability of error of SR-C is bounded by P(Gc).
Using Lemma 5, one obtains

P(Gc) ≤ K(K − 1)
K−h∑
k=1

exp
(
−nk · α

(
R

1
4
K+1−k,Σ

))
≤ K(K − 1)

K−h∑
k=1

exp

(
−
c1(1

4
)(n−K − 1)α (RK+1−k,Σ)

log(K
h

)(K + 1− k)

)

= K(K − 1)
K∑

k=h+1

exp

(
−
c1(1

4
)(n−K − 1)α (Rk,Σ)

log(K
h

)k

)

≤ K(K − 1)
K∑

k=h+1

exp

(
−
c1(1

4
)(n−K − 1)

log(K
h

)HC

)

≤ K3 exp

(
−
c1(1

4
)(n−K − 1)

log(K
h

)HC

)
,

which completes the proof.

5 Fixed-Confidence Setting: Successive Elimination for Corre-
lation

In this section, we introduce and study a new algorithm, SE-C (Successive Elimination for Corre-
lation). See Figure 3 for its complete description. SE-C is a more dynamic algorithm than SR-C.
SE-C updates the suboptimality estimates for the existing arms at each time step rather than at the
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end of each round. And while SR-C always rejects an arm at each of some prespecified time steps,
SE-C eliminates arms only when those arms are judged suboptimal with enough confidence. The
following theorem shows that SE-C needs at most Õ (HC +K) samples to find the optimal subset.

Input: confidence level δ > 0.
(1) Set t = 1. Choose A1 = [K] and sample A1 from X1.
(2) While |At| > h, do

(2.1) For each i ∈ At, compute Ui,t = maxA⊂At,|A|=h mini∈B⊂At,|B|=h D̂t(A,B) where

D̂t(A,B) =

∑
(j,`)∈B2\(A∩B)2,j 6=`(1− σ̂j,`,t)∑
(j,`)∈A2\(A∩B)2,j 6=`(1− σ̂j,`,t)

with the notation 0
0

= 1.

(2.2) Choose At+1 = At\{i ∈ At : Ui,t ≥ (α−1(gt))
2} where gt =

log
(

2K2t2

δ

)
t

and α−1 is the
inverse function of α. Sample At+1 from X t+1 and set t← t+ 1.
Output: Ŝ = At.

Figure 3: SE-C (Successive Elimination for Correlation) algorithm

Theorem 4 With probability at least 1− δ, SE-C returns the optimal subset S∗ and the number of
samples it uses is bounded by

O

hmax

1,
log
(

2K2

δα(R(h+1),Σ)

)
α(R(h+1),Σ)

+
K∑

i=h+1

max

1,
log
(

2K2

δα(R(i),Σ)

)
α(R(i),Σ)

 = Õ(HC +K).

Proof Without loss of generality, we assume that S∗ = [h] and

1 = R1,Σ = . . . = Rh,Σ < Rh+1,Σ ≤ . . . ≤ RK,Σ.

Define the event

G =
⋂

j,`∈[K],j 6=`

{
∀t ≥ 1, (α−1(gt))

−1(1− σj,`) < 1− σ̂j,`,t < α−1(gt)(1− σj,`)
}
.

Observe that when G occurs, the following inequalities hold true

(α−1(gt))
−2DΣ(A,B) < D̂t(A,B) < (α−1(gt))

2DΣ(A,B).

Once again, we use Lemma 5 to bound the probability of Gc as

P(Gc) ≤ K(K − 1)
+∞∑
t=1

exp(−tgt) ≤
+∞∑
t=1

δ

2t2
≤ δ.
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Now to prove the theorem, it is enough to show that under the event G, SE-C always terminates
with the optimal subset S∗ and the number of samples it uses is bounded as claimed. These two
facts are proved separately in the following two steps.

Step One: Fix a t ≥ 1. Assume that all of the optimal arms are still present at the beginning of
time t, that is, S∗ ∈ At. For any A such that A ⊂ At, |A| = h, one has

D̂t(A, S∗) < (α−1(gt))
2DΣ(A, S∗) ≤ (α−1(gt))

2.

This implies that for any optimal arm i ∈ S∗, we have Ui,t < (α−1(gt))
2 and thus i is not elimi-

nated at the end of round t.

Step Two: Consider a suboptimal arm i. If i is not eliminated before or at the end of time t, then

(α−1(gt))
2 > Ui,t

≥ min
i∈B⊂At,|B|=h

D̂t(S∗, B)

≥ (α−1(gt))
−2 min

i∈B⊂At,|B|=h
DΣ(S∗, B)

= (α−1(gt))
−2Ri,Σ

Therefore, i cannot be sampled more than t times as long as t is such that gt ≤ α
(
R

1
4
i,Σ

)
. The

latter inequality holds true as long as gt ≤ c2

(
1
4

)
α (Ri,Σ). Thus, any suboptimal arm i cannot be

sampled more than O

(
max

(
1,

log

(
2K2

δα(Ri,Σ)

)
α(Ri,Σ)

))
times. Moreover, the algorithm stops once all

the supoptimal arms have been eliminated. Thus, an optimal arm cannot be sampled more than

O

(
max

(
1,

log

(
2K2

δα(Rh+1,Σ)

)
α(Rh+1,Σ)

))
times, which completes the proof.

6 Discussion
This work is a first step towards understanding the hardness of finding the most correlated arms
with an adaptive sampling scheme. We proposed two algorithms SR-C and SE-C, and we show
that both succeed with at most Õ

(
h · α(R(h+1),Σ)−1 +

∑K
i=h+1 α(R(i),Σ)−1 +K

)
samples. The

result of Section 3.2 together with known arguments from the best arm identification literature
strongly indicates that the term

∑K
i=h+1 α(R(i),Σ)−1 is unavoidable. On the other hand it is clear

that the term h · α(R(h+1),Σ)−1 is suboptimal in some cases. For example, consider the prob-
lem instances that are equivalent, up to a permutation of the arms, to the one with the correlation
matrix Σ described in Section 3.2. In these cases there is always a block of h− 1 perfectly corre-
lated arms, and thus one vector sample will allow to identify this block. Consequently, for these
problem instances a trivial modification of SR-C and SE-C will result in a reduced upper bound
Õ
(
α(R(h+1),Σ)−1 +

∑K
i=h+1 α(R(i),Σ)−1 +K

)
. It is an interesting challenge to design algorithms
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that can significantly reduce the term Õ
(
h · α(R(h+1),Σ)−1

)
for general problem instances. It is

worth noting that a similar term Õ
(
h ·∆−2

(h+1)

)
was observed when the best arm identification

algorithm Successive Rejects was used for the task of identifying the h best arms. This term can
be significantly reduced by allowing the algorithm to accept seemingly optimal arms early, in the
same way as seemingly suboptimal arms are rejected early, see Kalyanakrishnan et al. [2012] and
Bubeck et al. [2013] for details. Unfortunately, the same trick can not be applied easily to the
problem of most correlated arms identification. The main difficulty is that when an optimal arm is
accepted early, the remaining optimal arms are not necessarily the most mutually correlated arms
among all the remaining arms, thus making the identification of the remaining optimal arms dif-
ficult (if not impossible). To summarize, a novel algorithmic idea is needed to improve our upper
bound. Another interesting direction of further work is to prove a lower bound on the number of
samples that any adaptive strategy must use.
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A Technical Lemmas
Lemma 1 (Concentration Inequalities for Chi-Square Distributions) Let Y be a random variable
following the chi-square distribution with degree of freedom t ∈ N. Then for any θ ≥ 1, the
following concentration inequalities hold:

P
(
Y

t
≤ 1

θ

)
≤ exp (−t · α(θ))

P
(
Y

t
≥ θ

)
≤ exp

(
− t

2
(θ − 1− log θ)

)
≤ exp (−t · α(θ)) .

Proof The proof is a simple application of Chernoff’s bounding technique.

Lemma 2 Let µ0 and µ1 be two probability distributions on some set X , with µ0 absolutely
continuous with respect to µ1. Let X be a random variable taking values in X . Then for any
measurable function ϕ : X → {0, 1}, one has

max (PX∼µ0(ϕ(X) = 1),PX∼µ1(ϕ(X) = 0)) ≥ 1

4
exp (−KL(µ0, µ1)) .

Proof See Chapter 2 in Tsybakov [2009] for a proof.

Lemma 3 Let 1 > ρ0 > ρ1 ≥ 0 and R = 1−ρ1

1−ρ0
. Let Σ0 =

(
1 ρ0
ρ0 1

)
and Σ1 =

(
1 ρ1
ρ1 1

)
. Then

α(R) ≤ KL (N (0,Σ0),N (0,Σ1)) = KL
(
N (ρ0, 1− ρ2

0),N (ρ1, 1− ρ2
1)
)
≤ c · α(R).

where c > 1 is an universal constant.

Proof Recall the following general formula for the KL-divergence between two Gaussian distri-
butions on Rk,

KL (N (µ0,Σ0),N (µ1,Σ1)) =
1

2

(
log

(
det Σ1

det Σ0

)
+ Tr(Σ−1

1 Σ0)− k + (µ1 − µ0)TΣ−1
1 (µ1 − µ0)

)
.

By straightforward application of the above formula, one has

KL (N (0,Σ0),N (0,Σ1)) = KL
(
N (ρ0, 1− ρ2

0),N (ρ1, 1− ρ2
1)
)

=
1

2

(
log

1− ρ1

1− ρ0

+
1− ρ0

1− ρ1

− 1 + log
1 + ρ1

1 + ρ0

+
1 + ρ0

1 + ρ1

− 1

)
= α(R) + β

(
1 + ρ0

1 + ρ1

)
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where the function β is defined as β(θ) = θ − 1 − log θ, for θ ≥ 1. It is easy to see that β is a
positive, strictly increasing function on [1,+∞[. Since 1+ρ0

1+ρ1
≤ min(2, R), one has

β

(
1 + ρ0

1 + ρ1

)
≤ β(min(2, R)).

Moreover, because β(R) = Θ ((R− 1)2) when R → 1, there exists a universal constant c > 0
such that β(min(2, R)) ≤ c · α(R) for any R ≥ 1, which completes the proof.

Lemma 4 Consider the two correlation matrices Σ, Σ
′

described in section 3.2. One has

KL
(
N (0,Σ

′
),N (0,Σ)

)
≤ c · α(Rh+1,Σ)

where c is an universal constant.

Proof Let Z0, Zh, Zh+1, . . . , ZK be i.i.d. standard Gaussian random variables. Define two random
vectors W = (W1, ...,WK) and W ′

= (W
′
1, ...,W

′
K) as

Wi =

{
Z0, if i ≤ h− 1

ρiZ0 +
√

1− ρ2
iZi, if i ≥ h

and

W
′

i =


Z0, if i ≤ h− 1

ρiZ0 +
√

1− ρ2
iZi, if i ≥ h and i 6= h+ 1

ρ
′

h+1Z0 +
√

1− ρ′2h+1Zh+1, if i = h+ 1

.

Then it is easy to see that W and W ′ are two centered Gaussian vectors with covariance matrices
Σ and Σ

′ . Moreover, conditioning on W1 = z for some z ∈ R, W2, . . . ,WK are independent
and Gaussian distributed as Wi ∼ N (z, 0) for 2 ≤ i ≤ h − 1 and Wi ∼ N (ρiz, 1 − ρ2

i ) for
i ≥ h. Similarly, conditioning on W ′

1 = z, W ′
2, . . . ,W

′
K are independent and Gaussian distributed

as W ′
i ∼ N (z, 0) for 2 ≤ i ≤ h − 1, W ′

h+1 ∼ N (ρ
′

h+1z, 1 − ρ
′2
h+1) and W ′

i ∼ N (ρiz, 1 − ρ2
i )

for i ≥ h and i 6= h + 1. In what follows, we use L(Y ) to represent the distribution of a random
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variable Y . Using the conditioning formula for KL-divergence, one has

KL
(
N (0,Σ

′
),N (0,Σ)

)
= KL

(
L(W

′

1),L(W1)
)

+ Ez∼W ′1
[
KL
(
L((W

′

2, ...,W
′

K)|W ′

1 = z),L((W2, ...,WK)|W1 = z)
)]

= Ez∼N (0,1)

[
KL
(
N (ρ

′

h+1z, 1− ρ
′2
h+1),N (ρh+1z, 1− ρ2

h+1)
)]

= Ez∼N (0,1)

[
1

2

(
log

(
1− ρ2

h+1

1− ρ′2h+1

)
+

1− ρ′2h+1

1− ρ2
h+1

− 1 +
(ρh+1 − ρ

′

h+1)2z2

1− ρ2
h+1

)]

=
1

2

(
log

(
1− ρ2

h+1

1− ρ′2h+1

)
+

1− ρ′2h+1

1− ρ2
h+1

− 1 +
(ρh+1 − ρ

′

h+1)2

1− ρ2
h+1

)
= KL

(
N (ρ

′

h+1, 1− ρ
′2
h+1),N (ρh+1, 1− ρ2

h+1)
)

≤ c · α
(

1− ρh+1

1− ρ′h+1

)

where c is an universal constant and the last step follows from Lemma 7. To conclude, it is enough

to observe that α
(

1−ρh+1

1−ρ′h+1

)
= α

((
1−ρh+1

1−ρh

)2
)

= α(R2
h+1,Σ) ≤ c2(2)α(Rh+1,Σ).

15


	Introduction
	Correlation Estimators
	Classical Correlation Estimator
	Difference-Based Correlation Estimator
	Optimality of the Difference-Based Correlation Estimator 

	Non-Adaptive Sampling Setting
	Upper Bound
	Lower Bound

	Fixed-Budget Setting: Successive Rejects for Correlation
	Fixed-Confidence Setting: Successive Elimination for Correlation 
	Discussion
	Technical Lemmas

