Multiple Identifications in Multi-Armed Bandits

Sébastien Bubeck

SBUBECK@PRINCETON.EDU

Department of Operations Research and Financial Engineering, Princeton University

Tengyao Wang
Department of Mathematics, Princeton University

Nitin Viswanathan

Department of Computer Science, Princeton University

Abstract

We study the problem of identifying the top
m arms in a multi-armed bandit game. Our
proposed solution relies on a new algorithm
based on successive rejects of the seemingly
bad arms, and successive accepts of the good
ones. This algorithmic contribution allows to
tackle other multiple identifications settings
that were previously out of reach. In partic-
ular we show that this idea of successive ac-
cepts and rejects applies to the multi-bandit
best arm identification problem.

1. Introduction

We are interested in the following situation: An agent
faces K unknown distributions, and he is allowed to
do n sequential evaluations of the form (i, X)) where
i €{l,...,K} is chosen by the agent and X is a ran-
dom variable drawn from the *" distribution and re-
vealed to the agent. The goal of the agent after the n
evaluations is to identify a subset of the distributions
(or arms in the multi-armed bandit terminology) cor-
responding to some prespecified criterion. This set-
ting was introduced in (Bubeck et al., 2009), where
the goal was to identify the distribution with maxi-
mal mean. Note that in this formulation of the prob-
lem the evaluation budget n is fixed. Another possi-
ble formulation is the one of the PAC model studied
in (Even-Dar et al., 2002; Mannor & Tsitsiklis, 2004)
where an accuracy € and a probability of correctness §
are prespecified, and one wants to minimize the num-
ber of evaluations to attain this prespecified accuracy
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and probability of correctness. This latter formulation
has a long history which goes back to the seminal work
(Bechhofer, 1954).

In this paper we focus on the fixed budget setting of
(Bubeck et al., 2009). For this fixed budget problem,
(Audibert et al., 2010) proposed a new analysis and an
optimal algorithm (up to a logarithmic factor). In par-
ticular this work introduced a notion of best arm iden-
tification complexity, and it was shown that this quan-
tity, denoted H, characterizes the hardness of identi-
fying the best distribution in a specific set of K dis-
tributions. Intuitively, it was shown that the number
of evaluations n has to be Q(H/log K) to be able to
find the best arm, and the algorithm SR (Successive
Rejects) finds it with O(H log® K) evaluations. Fur-
thermore in the latter paper the authors also suggested
the open problem of generalizing the analysis and algo-
rithms to the identification of the m distributions with
the top m means. Our main contribution is to solve
this open problem. We suggest a non-trivial extension
of the complexity H, denoted H{™, to the problem of
identifying the top m distributions, and we introduce
a new algorithm, called SAR (Successive Accepts and
Rejects), that requires only o (H<m>) evaluations' to
find the top m arms. We also propose a numerical
comparison between SAR, SR and uniform sampling
for the problem of finding the m top arms. Interest-
ingly the experiments show that SR performs badly for
m > 1, which shows that the tradeoffs involved in this
generalized problem are fundamentally different from
the ones for the single best arm identification.

Note that this problem and the associated complexity
H{™ have been studied recently in the PAC model

In the m-best arms identification problem we write

Up = 6(%) when u, = O(v,) up to logarithmic factor
in K
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in (Kalyanakrishnan et al., 2012). The present paper
is a concurrent and independent work with respect to
the latter paper. In particular, the algorithm LUCB
designed in (Kalyanakrishnan et al., 2012) is based
on fundamentally different ideas (confidence intervals
and UCB type algorithms) than the one developed in
this paper.

As a by-product of our new analysis we are also able
to solve an open problem of (Gabillon et al., 2011).
In this paper the authors studied the setting where
the agent faces M distinct best arm identification
problems. A multi-bandit identification complexity
was introduced, that we denote H™J. On the con-
trary to the setting of single best arm identification,
here the algorithm proposed in (Gabillon et al.,
2011) that needs of order of HIM| evaluations to
find the best arm in each bandit requires to know
the complexity H™! to tune its parameters. Using
our SAR machinery, we construct a parameter-free
algorithm that identifies the best arm in each bandit
with O (HM]) evaluations?®.

Both the m-best arms identification and the multi-
bandit best arm identification have numerous poten-
tial applications. We refer the interested reader to the
previously cited papers for several examples.

2. Problem setup

We adopt the terminology of multi-armed bandits.
The agent faces K arms and he has a budget of n
evaluations (or pulls). To each arm i € {1,...,K}
there is an associated probability distribution v;,
supported® on [0, 1]. These distributions are unknown
to the agent. The sequential evaluations protocol
goes as follows: at each round ¢t = 1,...,n, the agent
chooses an arm I;, and observes a reward drawn
from v, independently from the past given I;. In
the m-best arms identification problem, at the end of
the n evaluations, the agent selects m arms denoted
Ji,...,Jm. The objective of the agent is that the set
{J1,...,Jm} corresponds to the set of arms with the
m highest mean rewards.

Denote by p1,...,pux the mean of the arms. In the
following we assume that g3 > ... > pg. The ordering

2In the multi-bandit best arm identification problem we
write u, = 6(vn) when u, = O(v,) up to logarithmic
factor in MK

30ne can directly generalize the discussion to o-
subgaussian distributions.

assumption comes without loss of generality, and the
assumption that the means are all distinct is made for
sake of notation (the complexity measures are slightly
different if there is an ambiguity for the top m means).
We evaluate the performance of the agent’s strategy by
the probability of misidentification, that is
en=P{J1,....Im} #{1,...,m}).

Finer measures of performance can be proposed, such
as the simple regret r, = ", (1; — Ep,). However,
as it was argued in (Audibert et al., 2010), for a first
order analysis it is enough to focus on the quantity
€n-

In the (single) best arm identification, (Audibert et al.,
2010) introduced the following complexity measures.
Let Ay = pg — pg for i £ 1, Ay = pg — po,

max iAi_Q.

Hy, =
ie{l,..,K}

1
Hl :ZP and
i=1 g

It is easy to see that these two complexity measures
are equivalent up to a logarithmic factor since we have
(see (Audibert et al., 2010))

Hy < Hy <log(2K)H>. (1)

[Theorem 4, (Audibert et al., 2010)] shows that the
complexity H; represents the hardness of the best
arm identification problem. While the proof of the
latter result is difficult and technical, it is intuitively
obvious that Hj is a lower bound on the number
of evaluations necessary to identify the best arm.
Indeed, merely to check if an arm has mean p; or
u*, one needs to sample it of order of 1/A? times.
The surprising fact is that of order of H; evaluations
suffices to identify the best arm. Note that as far as
upper bounds are concerned, the quantity Hy proved
to be a useful surrogate for H; to express the bounds
on e,.

For the m-best arms identification problem we define
the following gaps and the associated complexity mea-
sures:

Alm) i — g1 if T <m
i M — g i i>m
(m) - 1
mmo= > YRk
i=1 (Ai )
™ = max i (AW)*?
2 ie{1,...K} () ’
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where the notation (i) € {1,..., K} is defined such
that Agr;) <...< AE?; We conjecture that a similar
lower bound to [Theorem 4, (Audibert et al., 2010)]

with H; replaced by Hfm> holds true for the m-best
arms identification problem. Again such a statement
is pretty much obvious. Indeed assume that we know
the critical values p,,, and py,41. Then for each arm we
have an hypothesis testing problem which corresponds
to deciding whether p; > 41 (ie., the arm is in the
m best) or p; < i, (i.e., the arm is not in the m best).
For this hypothesis testing problem to be feasible, it is

2
easy to see that one needs of order of 1/ (A§m>) eval-

uations of arm ¢. While this does not prove the lower

(m)

bound, it strongly suggests that {2 (H 1 ) evaluations

are necessary to identify the top m arms.

In this paper we shall focus on positive results. In
particular we will prove an upper bound on e, that

gets small when n = O (Hém)) (recall that by (1),

o (Hz(m>) -0 (Hfm)) This result is derived in
Section 3, where we introduce our key algorithmic
contribution, the SAR (Successive Accepts and
Rejects) algorithm. We also present experiments for
this setting in Section 5.

In Section 4 we consider the framework of multi-
bandit introduced in (Gabillon et al., 2011), where the
agent faces M distinct best arm identification prob-
lems. For sake of notation we assume that each prob-
lem m € {1,..., M} has the same number of arms K.
We also restrict our attention to the single best arm
identification within each problem, but we could deal
with m-best arms identification within each problem.
We denote by v1(m),...,vg(m) the unknown distri-
butions of the arms in problem m. We define simi-
larly all the relevant quantities for each problem, that
is pr(m) > ... > pux(m), A1(m),...,Ax(m), Hi(m)
and Hy(m). Finally we denote by (i,m) the arm ¢ in
problem m. In the multi-bandit best arm identifica-
tion, the forecaster performs n sequential evaluations
of the form (Iy,m;) € {1,..., K} x{1,...,M}. At the
end of the n evaluations, the agent selects one arm for
each problem, denoted (Jy,1),...,(Ja, M). The ob-
jective of the agent is to find the arm with the highest
mean reward in each problem, that is in this setting
the probability of misidentification can be written as

en =PEme{l,... . M}:J, #1).

Following (Gabillon et al., 2011) we introduce the fol-

lowing complexity measure

M
M =N Hy(m).
=1

Again we define a sort of weaker complexity measure
by ordering the gaps. Let

AM <A << Al

be a rearrangement of {A;(m) : 1 <i < K,1<m <
M} in ascending order, and let

—2
HéM] = max k(AECM]> .
ke{l,...,. MK}

Similarly to the m-best arms identification problem
we conjecture that the lower bound [Theorem 4,
(Audibert et al., 2010)] with H; replaced by HM
holds true for the multi-bandit best arm identifi-
cation problem. Here we prove, using a variation

of SAR, that n = 6<H2[M]> (recall that by (1),

o (H2[M]) =0 (Hl[M]>) is enough to have a small
probability of error e,. This result is derived in
Section 4. The improvement with respect to (Gabillon

et al., 2011) is that our strategy is parameter-free,
while the theoretical Gap-E introduced in (Gabillon

et al., 2011) requires the knowledge of H{M] to tune
its parameter. Moreover the analysis of SAR is much
simpler than the one of Gap-E.

For each arm ¢ and all time rounds ¢ > 1, we denote
by Ti(t) = 3\, 11,—; the number of times arm i was
pulled from rounds 1 to ¢, and by X; 1, X;2,..., X 1,
the sequence of associated rewards. Introduce fi; s =
137 1 Xi .+ the empirical mean of arm i after s evalua-
tions. Denote by X; ;(m) and [i; ;(m) the correspond-
ing quantities in the multi-bandit problem.

3. m-best arms identification

In this section we describe and analyze a new algo-
rithm, called SAR (Sucessive Accepts and Rejects),
for the m-best arms identification problem, see Fig-
ure 1 for its precise description. The idea behind SAR
is similar to the one for SR (Successive Rejects) that
was designed for the (single) best arm identification
problem, with the additional feature that SAR some-
times accepts an arm because it is confident enough
that this arm is among the m top arms. Informally
SAR proceeds as follows. First the algorithm divides
the time (i.e., the n rounds) in K — 1 phases. At the
end of each phase, the algorithm either accepts the
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arm with the highest empirical mean or dismisses the
arm with the lowest empirical mean, and in both cases
the corresponding arm is deactivated. During the next
phase, it pulls equally often each active arm. The key
to decide whether to accept or reject during a cer-
tain phase k is to rely on estimates for the gaps A§m>
More precisely, assume that the algorithm has already
accepted m — m(k) arms Ji,..., Jy_m(k), i-e. there
is m(k) arms left to find. Then, at the end of phase
k, SAR computes for the m(k) empirical best arms
(among the active arms) the distance (in terms of em-
pirical mean) to the (m(k) + 1)** empirical best arm
among the active arms. On the other hand for the
active arms that are not among the m(k) empirical
best arms, SAR computes the distance to the m(k)t"
empirical best arm. Finally SAR deactivates the arm
i that maximizes these empirical distances. If iy is
currently the empirical best arm, then SAR accepts
ir, and sets m(k +1) = m(k) — 1, Jpo—m@rt1) = ir;
and otherwise it simply rejects i;. The length of the
phases are chosen similarly to what was done for the
SR algorithm.

Theorem 1 The probability of error of SAR in the
m-best arms identification problem satisfies

€n S 2K2 exp 7771_7}((“0 .
8log(K)H,

Proof Consider the event £ defined by

& = {Vie{1,...,K},ke{1,...,K—1},

1 &
- Z Xi,s — M
T s=1

< A“"

(K41— k)}

By Hoeffding’s Inequality and an union bound, the
probability of the complementary event & can be
bounded as follows

K K—1 L (
SZ P(nkZXi,s_,uz > AK+1 k))

i=1 k=1 s=1

K K—1
<303 2o 2 AL /1)

i=1 k=1

- K
< 2K?%exp —jiw )
Slog(K)H,™

Lat Ay = {1 K, ) = o () = 4+
S no—Oand for ke {1,...,K —1},

i=2 3

- [@im Ko IJ

For each phase k=1,2,... , K — 1:

(1) For each active arm ¢ € Ay, select arm 4 for ny —
nk—_1 rounds.

(2) Let o : {1,..., K+1—k} — A be the bijection
that orders the empirical means by fig, (1),n,
ﬁo’k(Z),nk > 2 ,aak(Klefk),nk- For 1 < r
K + 1 — k, define empirical gaps

>
<

Hho (r) i N Fho (m (k) 1),my,
A ifr<m

or(r)me = o), (m(k)),n =l (r)

ifr>m(k)+1

(3) Let i) € argmax;cy, ﬁi,nk (ties broken arbi-
trarily). Deactivate arm iy, that is set Aptq1 =

(4) If fiyn, > Hop(m(k)+1),n, then arm iy is ac-
cepted, that is set m(k + 1) = m(k) — 1 and
Jmfm(k:ﬁ»l) = k.

Output: The m accepted arms J1,..., Jn.

Figure 1. SAR (Successive Accepts and Rejects) algorithm
for m-best arms identification.

where the last inequality comes from the fact that

me (2, 0)

> n—K .
Tog(K) (K +1- k) (A5, )
n—K
~ Tog(K)H™

Thus, it suffices to show that on the event £, the al-
gorithm does not make any error. We prove this by
induction on k. Let k > 1. Assume the algorithm
makes no error in all previous k — 1 stages, that is no
bad arm ¢ > m has been accepted and no good arm
i < m has been rejected. Note that event £ implies
that at the end of stage k, all empirical means are

(m)
within A(K+1 %)

Let Ax = {a1,...,ax1+1-} be the the set of active
arms during phase k. We order the a;’s such that
Hay > Hag > 0 > Mag,,_,- To slightly lighten the

of the respective true means.
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notation we denote m’ = m(k) for the number of arms
that are left to find in phase k. The assumption that
no error occurs in the first k — 1 stages implies that

Ay € {17 .

a1, az, ..., 7m}7

and
K}.

/41y -+ AK+1—k € {m—i—l,...,

If an error is made at stage k, it can be one of the
following two types:

v

1. The algorithm accepts a; at stage k for some j
m' + 1.

IN

2. The algorithm rejects a; at stage k for some j

m'.

Again to slightly shorten the notation we denote o =
oy for the bijection (from {1,...,K + 1 — k} to Ag)
such that ﬂa(l),nk > ﬂo’(Z),nk > 2 ﬁa(K+17k),nk-
Suppose Type 1 error occurs. Then a; = o(1) since
if the algorithm accepts, it must accept the empirical
best arm. Furthermore we also have

ﬁa]‘,nk - ﬁo(m’-‘,—l),nk > ﬁa(m/),nk - //ZU(K—Q—l—k),nkv (2)
since otherwise the algorithm would rather reject arm
o(K +1— k). The condition a; = (1) and the event
¢ implies that

~
/La],nk = Ual Mk

(m) L\ (m)
= fa; T ZA(K—H—/C) Z fay — ZA(K-H—IC)

(m) L\m)
= A(K-i—l—k) > §A(K+1—k) > May — /’caj > Hay — Hm+1
We then look at the condition (2). In the event of &,

for all : < m/, we have

-~ L\ m)
Paine = Ha; — EA(K-H—k)
(m)
2 Ma,,, *A (K+1—k)
]- (m)
2 Hm— ZA(K—H—I@)'
So there are m + 1 arms in A (namely
A1,Q2,. .., Qms, Aj) whose empirical means
are at least fu, 1A($ZH k) which means
Ho(m/+1),n, = Hm — IA%ZA e On the other hand,

~ ~ 1A (m)
Ko (K+1—k),ny < /‘LaK+1—k7nk < Hagii-w t A(KJr1 k)

Therefore, using those two observations and (2) we

deduce

L\ (m)
( T A(K+1 k)) (”m_4A(K+1—k)>

L\ (m) L\ (m)
> (Mm - 4A(K+1;€)) - (NGK+1—1< + ZA(K+17k)

= AEYI?ZH k) = 2 2,LLm Ha; — Hag i1k > fm — Hagi1—k-

Thus so far we proved that if there is a Type 1 error,
then

Aéziq k) > max(fiq, - :LLaK+1—k)'

— Hm,y Um

But at stage k, only k — 1 arms have been accepted
or rejected, thus A(K+1 k) — W, b —
Mag,,_,)- By contradiction, we conclude that Type 1
error does not occur.

< max(fia,

Suppose Type 2 error occurs. The reasoning is
symmetric to Type 1. In fact, if we rephrase the
problem as finding the K — m worst arms instead of
the m best arms, this is exactly the same as Type 1
error. Hence Type 2 error cannot occur as well. This
completes the induction and consequently the proof
of the theorem. |

4. Multi-bandit best arm identification

In this section we use the idea of SAR for multi-bandit
best arm identification. Here at the end of each phase
we estimate the gaps A;(m) within each problem, and
we reject the arm with the largest such estimated gap.
Moreover if a problem is left with only one active arm,
then this arm is accepted and the problem is deacti-
vated. The corresponding strategy is described pre-
cisely in Figure 2

Theorem 2 The probability of error of SAR in the
multi-bandit best arm identification problem satisfies

- MK
enSQMQKQeXp _j—M .
8log(M K)HM

Proof Consider the event ¢ defined by

§:{V1§z’§K, 1<m<M, 1<k<MK -1,

1 &

;k Z Xi,s(m) - ,ui(m)

s=1

1
< 4A(MK+1—k)}-

Following the same reasoning as in the proof of The-
orem 1, it suffices to show that in the event of & the
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Let A1 = {(1,1),...,(K,M)}, log(MK) = 1 +
SMEL no=0and for k€ {1,..., MK — 1},

=2 5

., _[ 1 n— MK w
T | log(ME) MK +1— k|

For each phase k=1,2,... MK — 1:

(1) For each active pair (arm, problem) (i, m) € Ag,
select arm 4 in problem m for ny — ng_1 rounds.

(2) Let hx(m) be the arm with the highest empiri-
cal mean [i; n, (m) among the active arms in the
active problem m (that is such that (i, m) € Ag).

(3) If there is a problem m such that hx(m) is the
last active arm in problem m, then deactivate
both the arm and the problem, and accept the
arm. That is, set Agy1 = Ag \ {(he(m),m)} and
Jm = hi(m). Otherwise proceed to step (4).

(4) Let

(ir, mx) € argmax (Iny (m),ny, (M) = Hiny (M) -
(i,m)EA

(Ties broken arbitrarily.) Deactivate arm ix in
problem my, that is set Agy1 = Ar \ {(ix, mr)}

Output: The M accepted arms (Ji,1),...,(Jar, M)
(where the last accepted arm is defined by the unique
element of Ayk).

Figure 2. SAR (Successive Accepts and Rejects) algorithm
for the multi-bandit best arm identification.

algorithm makes no error. We do this by induction on
the phase k of the algorithm. Let & > 1. Assume the
algorithm makes no error in all previous k£ — 1 stages.
Then at phase k, for each active problem m, the arm
(1,m) is still active. Moreover, as only k— 1 arms have
been deactivated, one clearly has

‘max (u1(m) — pi(m)) = Arri-k)-
(i,m)€EAy
Suppose the above maximum is achieved for the arm
(i*,m*), so we have

pr(m™) — pi= (m*) > Ay 41-k)- (3)

Assume now that the algorithm makes an error at the
end of phase k, i.e. some arm (1, m) is deactivated and
it was not the last active arm in problem m. For this to
happen, we necessarily have for some j € {2,..., K}

(e'g‘v Jj= hk(m))a

ﬁ]ﬁ’ﬂk (m) - ﬁl,nk (m) > //’Zl,nk (m*) - //Ii*”ﬂk (m*) (4)

Clearly on the event £ one has

Hjny, (M) = [i1,n, (M)
= /-/Ij,nk (m) — My (m)
+ pi(m) = pa(m) + pa(m) — fizn, (M)

1
< QA(MKJ,-l—k)-
On the other hand, using (3) and &, one has

[1,my (M) = Ty (M)
= H1,n, (M*) — p1(m”)
+ pa(m”) = prg= (M) 4 ppi= (M*) = L, (M)

1
> §A(MK+1—k)~

Therefore, [i1,,, (M*) — Li* ne(M*) > [jn, (M) —
H1n,(m), contradicting (4). This completes the
induction and the proof. |

5. Experiments

In this section we revisit the simple experiments of
(Audibert et al., 2010) in the setting of multiple iden-
tifications. Since our objective is simply to illustrate
our theoretical analysis we focus on the m-best arms
identification problem, but similar numerical simula-
tions could be conducted in the multi-bandit setting
and compared to the results of (Gabillon et al., 2011).

We compare our proposed strategy SAR to three com-
petitors: The uniform sampling strategy that divides
evenly the allocation budget n between the K arms,
and then return the m arms with the highest empir-
ical mean (see (Bubeck et al., 2011) for a discussion
of this strategy in the single best arm identification).
The SR strategy is the plain Successive Rejects strat-
egy of (Audibert et al., 2010) which was designed to
find the (single) best arm. We slightly improve it for
m-best identification by running only K —m—1 phases
(while still using the full budget n) and then return-
ing the last m surviving arms. Finally we consider
the extension of UCB-E to the m-best arms identifi-
cation problem, which is based on a similar idea than
the extension Gap-E of (Gabillon et al., 2011) for the
multi-bandit best arm identification, see Figure 3 for
the details. Note that this last algorithm requires to
know the complexity H1<m>. One could propose an
adaptive version, using ideas described in (Audibert
et al., 2010), but for sake of simplicity we restrict our
attention to the non-adaptive algorithm.

In our experiments we consider only Bernoulli distri-
butions, and the optimal arm always has parameter
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Parameter: exploration parameter ¢ > 0.

For each round t =1,2,...,n:

(1) Let oy be the permutation of {1,..., K} that or-
ders the empirical means, i.e., fis, (1), Ly (t=1) >

Boy(2),T,, ) (t=1) = ** 2 Hoy(K),T,, 5 (t—1)- For
1 <r < K, define the empirical gaps

Hot(r), Ty, 7y (t=1) — Mot (m+1),Ty, (m41) (1)

~ ifr<m
Adt(r)qt = m 1
Hot(m), Ty, (m)(t—=1) = Hoy(r), Ty, () (t—1)
ifr>m+1
(2) Draw

(m)
~ n/H
I; € argmax —A;;+cf/ ——1—.
ie{L,....K} V Ti(t —1)

Let Ji,...,Jm be the m arms with highest empirical
means [I; 1, (n)-

Figure 3. Gap-E algorithm for the m-best arms identifica-
tion problem.

1/2. Each experiment corresponds to a different sit-
uation for the gaps, they are either clustered in few
groups, or distributed according to an arithmetic or
geometric progression. For each experiment we plot
the probability of misidentification for each strategy,
varying m between 2 and K —1. The allocation budget
for each experiment is chosen to be roughly equal to
maxi<m<K—1 Hfm>. We report our results in Figure
4. The parameters for the experiments are as follows:

e Experiment 1: One group of bad arms, K = 20,
f2:20 = 0.4 (meaning for any j € {2,...,20}, 45 =
0.4)

e Experiment 2: Two groups of bad arms, K = 20,
H2:6 = 042’ H7:20 = 038

e Experiment 3: Geometric progression, K = 4,
wi =0.5—(0.37)%, i € {2,3,4}.

e Experiment 4: 6 arms divided in three groups,
K= 67 H2 = 0427 H3:4 = 04a H5:6 = 0.35.

e Experiment 5: Arithmetic progression, K = 15,
wi =0.5—0.025¢, i € {2,...,15}.

e Experiment 6: Three groups of bad arms, K = 30,
p2:6 = 0.45, pr.00 = 0.43, po21:30 = 0.38.

It is interesting to note that SR performs badly for
m-best arms identification when m > 1, as it has even
worse performances than the naive uniform sampling
in many cases. This shows that the tradeoffs involved
in finding the single best arm and finding the top m
arms are fundamentally different. As expected SAR
always outperforms uniform sampling, and Gap-E has
slightly better performances than SAR (but Gap-E re-
quires an extra information to tune its parameter, and
the adapative version comes with no provable guaran-
tee).
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Figure 4. Numerical simulations for the m-best arms iden-
tification problem. We chose ¢ = 2 (exploration parameter)

for the Gap-E algorithm in all experiments.




