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Abstract

We consider the problem of online optimization of a noisy function in an arbitrary measurable
space. We prove that if we know the local smoothness of the function around its maximum then
one can perform efficient optimization. In particular one can obtain an expected cumulative
regret of order

√
n no matter the ”dimension” of the space.

Framework

• A measurable space X equipped with a dissimilarity ℓ, that is, a non-negative mapping
ℓ : X 2 → R satisfying ℓ(x, x) = 0.

• An X -armed bandit (or environment on X ), M : X → P1([0, 1]) (the set of probability
measures on [0, 1]).

• Let f (x) be the expectation of M (x).

• When one pulls a point x ∈ X one receives an independent reward Y ∼ M (x).

• Goal: search online where is the maximum f∗ = supx∈X f (x) of f. That is, pull sequentially
points X1, . . . , Xn so as to minimize the cumulative regret

Rn =
n∑

t=1

f∗ − f (Xt).

Assumption 1. The mean-payoff function f is weakly Lipschitz with respect to ℓ, i.e., for

all x, y ∈ X ,

f∗ − f (y) ≤ f∗ − f (x) + max
{
f∗ − f (x), ℓ(x, y)

}
.

Basically this assumption implies that f is locally Lipschitz around any maxima and that there
is no brutal decrease in the neighborhood of any maxima.

Near-optimality dimension

Definition 1. Let Xε = {x ∈ X , f∗ − f (x) ≤ ε} be the set of ε–optimal arms. The near-

optimality dimension of f is defined as the smallest d ≥ 0 such that Xε can be packed with

O(ε−d) balls of radius ε for ε sufficiently small.
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For ℓ(x, y) = ||x − y|| we get d = 0.
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For ℓ(x, y) = ||x − y|| we get d = 1/2 but with
ℓ(x, y) = ||x − y||2 we get d = 0.

HOO (Hierarchical Optimistic Optimization)

Input: Tree of coverings

• (h, i) is the i–th node of depth h and corresponds to a subset Ph,i ⊂ X ;

• the root corresponds the whole domain, i.e., X = P0,1;

• any parent node is covered by its two children

• the diameter (measured with ℓ) of the domains shrinks as the depth increases:

diam(Ph,i) ≤ ρh; ρ ∈ (0, 1).

We also require that Ph,i contains a ball (with respect to ℓ) of diameter cρh for a fixed c > 0.

Global strategy given B–values for each node:

• Start with all nodes ”turned off”.

• Follow a path from the root to a turned-off node (h, i), where at each node along the path you
select the child with the largest B–value.

• Pull a point in Ph,i and turn on the node (h, i).

Definition of B–values:

• Let Nh,i(n) be the number of times (up to time n) we followed a path going through (h, i).

• Let µ̂h,i(n) be the empirical average of rewards collected when we followed a path going through
(h, i).

• We consider the following upper confidence bound for each turned-on node :

Uh,i(n) = µ̂h,i(n) +

√
2 ln n

Nh,i(n)
+ ρh.

• For turned-off nodes we set the B–values to infinity and for each turned-on node (h, i) we set:

Bh,i(n) = min
{
Uh,i(n), max

{
Bh+1,2i−1(n), Bh+1,2i(n)

}}
.
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Theoretical Results

Theorem 1 (Main result). Let d be the near-optimality dimension of f . There exists a

constant C(d) such that for all n ≥ 1, HOO strategy satisfy

ERn ≤ C(d) n(d+1)/(d+2) (ln n
)1/(d+2)

.

Theorem 2 (Minimax Optimality).Let c > 0 such that for all ε ≤ 1/4 there exist c ε−D ≥ 2
disjoint balls of radius ε in X . Then for all n ≥ 4D−1 c/ ln(4/3), all strategies are bound

to suffer a regret of at least

sup E Rn ≥ 1

4

(
1

4

√
c

4 ln(4/3)

)2/(D+2)

n(D+1)/(D+2),

where the supremum is taken over all environments with weakly Lipschitz payoff functions.

Moreover HOO matches this rate up to logarithmic terms.

Example

We consider X = [0, 1]D and a tree of dyadic partitions. Let α ∈ [0,∞) and assume that for
any maximum x∗ of f :

f (x∗) − f (x) = Θ(||x − x∗||α) as x → x∗.

We run the algorithm with ℓβ(x, y) = ||x − y||β.

•Known smoothness: β = α. We get a near optimality dimension d = 0. Thus in this
case the regret of HOO is Õ(

√
n),i.e., the rate is independent of the dimension D.

Previously this rate had be obtained only for D = 1 or when α ≤ 1 (and with algorithms
arguably less easy to implement).

• Smoothness underestimated: β < α. The near optimality dimension is d = D
(

1
β − 1

α

)

and the regret is Õ(n(d+1)/(d+2)).

• Smoothness overestimated: β > α. No guarantee since the Weak Lipschitz assumption
is violated.

Numerical Example

n = 1000 n = 10000


