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Abstract

We study the stochastic multi-armed bandit problem whenkmoevs the value:™*) of an optimal
arm, as a well as a positive lower bound on the smallest pegiapA. We propose a new random-
ized policy that attains a regrahiformly bounded over timia this setting. We also prove several
lower bounds, which show in particular that bounded regretat possible if one only knowA,
and bounded regret of ordéf A is not possible if one only knows™).

1. Introduction

In this paper we investigate the classical stochastic ranitied bandit problem introduced by
Robbins(1952 and described as follows: an agent facikgactions (or bandit arms) selects
one arm at every time step until a finite time horizen> 1. Successive pulls of each arm
ie{l1,...,K} yield a sequence of i.i.d rewards(l), YQZ), ... according to some unknown distri-
butionv; with expected valug?. Denote byx € {1,..., K} any optimal arm defined such that
p*) = max;— . x p. ApolicyI = {I,} is a sequence of random variablese {1, ..., K} in-
dicating which arm to pull at each tinte= 1, . .., n and such thaf; depends only on observations
strictly anterior tot. The performance of a policlis measured by its (cumulativedgretat time

n that is defined by

Ry =np® = S B0
t=1

Observe that if we denote W¥j;(t) = 2;511 1{I, = i} the number of times armwas pulled

(strictly) before timet > 2 and byA; = ™ — () the gap between arinand the optimal arm,
then one can rewrite the regret 8 = Zfil A;IET;(n + 1). This formulation will be used
hereafter.

We refer the reader tBubeck and Cesa-Biancf2012 for a survey of the extensive litera-
ture on this problem and its variations. In this paper we stigate a phenomenon that was first
observed in_Lai and Robbing19843: with some prior knowledge (in the form of lower bounds)
on the maximal meap(*) and the minimal gap\ = min;.a,~0 4A;, it is possible to obtain a re-
gret that isbounded uniformly im, which implies in particular that the regret does not tend to
infinity as the time horizom tends to infinity. Note that this result is striking, as theng®al pa-
perLai and Robbing1985 indicates that, if one has no prior knowledge on the distidns, then
asymptotically (inn) a regret of ordelog n is unavoidable.
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Contributions

We describe in Sectioha simple algorithm for the two-armed bandit problem whenloravs the
largest expected rewayd*) and the gap\. In this two-armed case, this amounts to knowing
andu(® up to a permutation. We show that the regret of this algorigbounded byA + 16/A,
uniformly in n. The optimality of this bound is assessed in Sectlonhere we show that any
agent knowingA andx*) must incur a regret of at leasf A. This upper and lower bounds raise
the following question: can such bounded regret be achiewtttbut one of these two pieces of
information? It follows from Theoren®and8 that the answer to this question is negative. Indeed,
the sole knowledge of eithex or .(*) leads to a rescaled regi&tR,, that is at least logarithmic in

n. Interestingly, all these results are fully non-asymgtaticluding lower bounds.

What if A is not perfectly known but only > 0 such thatA > ¢? We answer this question
in Section3 in the context of the generd-armed bandit problem. There, we prove an upper
bound onR,, when one knows the maximal meaft) together with a positive lower bourxdon
the smallest gaph. Specifically, we design a randomized policy for which

R, < Z {A +—log(5)}

:A; >0

Moreover, it follows form our main lower bound in Theoréhthat this result cannot be improved
without further assumptions, since foof order of1/,/n —no information on the smallest gap—
a logarithmic growth im is unavoidable for the rescaled regreR?,,. However fore of orderA
one would expect no dependency ofsince at least foK' = 2 our policy of Sectior? attains a
regret of orderl /A). To deal with this issue we propose an improvement of thelgdicy that
for which the termlog(1/¢) is replaced byog(A; /¢)loglog(1/¢). In particular if all the gapg\,
ande are of the same order, the logarithmic becomes a log-log.term

The exploration-exploitation tradeofis a preponderant paradigm in the bandit literature. The
effects of this tradeoff already appear for the cAse- 2 in the form of thlog n term derived in the
original Lai and Robbing1985 paper. Indeed, there exist simple classes of (two!) problever
which the regret is uniformly bounded with full informatibat cannot be bounded uniformly with
bandit feedback, see Theor@nClearly, this tradeoff should become more and more apparen
the number of arms increases but this is not our main focutheRahe combination of our results
sheds light on an interesting phenomenon: the effects dfélgeoff vanish when both and.(*)
are known but can be seen already wiiér= 2 and eitherA or () is unknown.

Related works

The two-armed bandit problem when one knows the distribgtiof the arms up to a permutation
was first investigated ihai and Robbing198443. The authors observed that in that case, using a
policy based on the sequential likelihood ratio test, omead#ain a regret uniformly bounded over
n. Both upper and lower bounds were provided. This settinggeseralized irLai and Robbins
(1984h, where the authors considered the general multi-armedibproblem when one knows
a separating valug between the largest mean and the other means. In that casprtwed the
bounded regret property for a policy based on sequentiliti&od ratio tests foH, : u > ~y vs.
Hy : p < v (assuming exponential distributions to compute the Iiadids). They also designed a
more subtle strategy for the case when qufy is known. In that case too they proved a bounded
regret property. The main open problems left by these warkéipto understand the limitations of
bounded regret, and (ii) to characterize the exact dep&edanthe parameters in the regret (when
bounded regret is achievable). In this paper we make pregreboth questions.

Regarding the limitations of bounded regret, we prove thirgge-time lower bounds, including
a finite-time version of the seminal resultlcdi and Robbing1985. Ideas similar to the ones we
develop in TheoremS and6 already appeared idulkarni and Lugos{2000 but our results are
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fully non asymptotic with the exact dependence in the pataraénvolved. TheorerB is more
innovative. It shows that a logarithmic growth for the rdsdaregretA R,, is unavoidable even if
one knows:™*). The proof of this result goes beyond any previous lower bidonthe stochastic
multi-armed bandit problem, includirigai and Robbing1984k 1985, since all of them required
to distinguish problems with different values @f*) (such as the ones in Theordhfior example).
As a consequence of this theorem, we can deduce that theegolith bounded regret derived
in Lai and Robbing1984b); Agrawal et al.(1989 with only the knowledge of.*) must have a
suboptimal dependency iy A.

The knowledge of:*) was also exploited in other works. For instanc&aiomon and Audibert
(2011), the authors showed that knowipd®) allows for policies with provably better concentra-
tion properties. Their policies are based on sequentielitikod ratio tests foH, : u = u™ vs.

H, : p < p™ (assuming Gaussian distributions to compute the likelils)o To some extent it
was to be expected that the knowledge:6f leads to an improved regret as it partially removes
the need for exploration: if one arm has empirical perforoesrclose t:(*), one can be confident
that this is the best arm without worrying that it could beltlest arm only because we have not yet
explored enough the other options. However note that thel@moturns out to be more subtle than
the above simple argument and underlines the fact that cedsmaore than the knowledge of-)

in order to have a bounded regret with optimal scaling/ith. Indeed, Theorer implies that the
sole knowledge of.*) does not warrant the bounded property for the rescaledtragie.

1.3. Basic assumptions

Throughoutthe paper, we assume that the distributipase sub-Gaussian thatfs«z““”)ui(dx) <
eX/2 forall A € R. Note that these include Gaussian distributions with vaxless than and
distributions supported on an interval of length less than

We denote byﬁgl) = %ijl Yg(l) the empirical mean of arm after s pulls, fors > 1.
Together with a Chernoff bound, it is not hard to see that tlieGaussian assumption implies the
following concentration inequality, valid for any > 0,

S0 (0) su?
P (" — p' > u) < exp -5 ) (1)

2. The two-armed case

In this section we investigate a toy example whéfe= 2 and the agent knows exactly both
p*) = 0 (without loss of generality) andh. While somewhat simplistic this example offers a
convenient framework to lay the main ideas to build polieidth bounded regret.

Initialization:
(0) Forrounds € {1,2}, select arm/; = ¢.
For each round = 3.4, . ..
@) If ﬁ%)(t) > —A/2 andﬂ%)(t) > ﬁ%)(t) then select arm, i.e., I; = i.

(2) Otherwise select both arms, i.é.,= 1 and/l;1; = 2.

Policy 1: A policy with bounded regret for the two-armed biaprdoblem.
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Theorem 1 Policy 1 has regret bounded aB,, < A + 16/A, uniformly inn.
Proof Without loss of generality we assume that « is the optimal arm. Observe that
{It_2}c{t_2}u{uT(t) >—A/2,t>3, It_2}u{uT(t) < —AJ2,t>3, I, =2}.
Summing ovet for the second event, we get

]Ele{uT o > —A/2, I =2} <]EZ]1{A(2 > —A/2} < iexp(—tAQ/S) < %. @)

t=1 t=1

For the third event we use the definition of the policy to abtai
{NT@)< —A/2,t>3, It—2}C{uT -1y S —A/2,6>3, I 1=1}

and conclude as ir2j. |

This policy has two weaknesses. First one may pay a big poicefsspecifying the value ah.
Namely if one only knows a lower bourid< ¢ < A and substitutes to A in Policy 1, then it
follows easily that the regret becomes of ordef=2. Furthermore, for essentially the same reason,
the trivial generalization of this algorithm to thi€-armed case would give a regret bounded by
> Ai/A%. In the next section we show how to overcome these two isssiag a new, random-
ized, policy.

3. A family of policies with bounded regret

In this section we consider the general multi-armed casenvitie agent knows™) = 0 (without
loss of generality) and an> 0 such that < A. Akin to Policy 1, the policy analyzed here sets a
threshold at-c/2 and prescribes to pull a single arm above this threshold.édewif all arms have
their empirical mean below this threshold, then the polgcyniore subtle than what was described
in the previous section (where all arms were pulled in rowdrr fashion). Here the policy picks
an arm at random, where the probability of selecting aisressentially proportional t(pT t)) 2,
which is an empirical estimate (Zﬁz sincep*) = 0. Policy 2 is slighly more general, as it uses
a potential function) : IRy — R4, and selects armwith probability inversely proportional to
1/)(|ﬁ%)(t) ). The natural choice ig(x) = x2, but other choices can lead to improved performances,
see Theoren2 below. Note that we also analyze the case whete 0 (that is, when we have no
information on the smallest gap). Hereafter, we defineb = min(a, b) anda V b = max(a, b).

Theorem 2 Fix e € (0,1 A A], then Policy2 associated with the potentiai(x) = 22 satisfies for all > 1,

32 7
:A; >0
Furthermore fore = 0, letv = (Y(*)) then the regret is bounded as
4log(9n)
Az: {A+1\/ VR } 4)

The dependency incan be reduced by using the potentiglr) = W since it yields

3210g(2A ) [

R.o< Y {Ai <

: ;>0

2+loglog(4)]} (5)
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Initialization:
(0) Forroundg € {1,..., K}, selectarm/; = t.
Foreachround=K + 1, K +2,...
(1) If there exists such thaﬁ%)(t) > —¢/2, then selecf; € argmax; <;<x /7%)@)-
(2) Otherwise select randomly an arm according to the fatigvprobability distribution:

K

c 1
Dit = RN N Whel’EC = Z SN N
W(7A% ) =g,

Policy 2: A family of policies with bounded regret for tlié-armed bandit problem.

If ¢ is of the order of every,, then Equationq) upper bounds the regreti, loglog(1/A;)/A;;
on the other hand, using the potentiglr) = x? only guarantees, under the same assumptions, a
boundin}_, log(1/A;)/A,.

The result fore = 0 implies that when one has no information on the smallest gappolicy
does not obtain bounded regret but it recovers the perforasanf UCB Auer et al.(2002. As we
shall see in Sectiod it is in fact impossible to obtain bounded regret scaling i\ if one only
knows ().

Theoren? is deduced from the following more general regret bound fdicl 2 expressed in
terms of the properties of the potential

Theorem 3 Fix ¢ € [0, A] and lety be a differentiable and increasing functign: [¢/2,00) — R*. If
e > 0, Policy 2 satisfies for alln > 1,

8 A rl6y(e/2) | [ 2¢'(x)
CEDIRCES R v ity WP L1 ©)

Furthermore fors = 0 it satisfies

X3

A; ~
Ros 3 (8 5+ ram B RD) ¢

Proof Without loss of generality we assume that= * is the optimal arm. We decompose the
event of a wrong selection into three events:

{I =i} C{t =i} U{iy), > —Ai/2,t > K +1, I, =i}
U {ﬁ%)@ <-A/2,t>K+1, I =i}.

Using ) one can easily prove that the cumulative probability offttet two events is smaller
than8/AZ. For the third event, it is convenient to define the randonmawde 7, € {0, 1,2} that
indicates whether the agent plays according to (0), (1) pm(Policy 2 at timet. We write the
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following, using the definition of the algorithm and the féitat is non-decreasing,
]P{'U‘T(t) <-AJ/2,t>K+1, I; =4}
_p{ﬁg(t <-NJ2,1,=i,7Z=2)}

- pi’tpl_,tll{ﬁ%)(t) <—NiJ2,7 =2}

<]Em 1Y < —A;/2, 2, =2}

= (Az/2) P1 :LLT(t > i/ 4y Lt =

< — LB, Ip{Z = 2)

- w(A /2) O

< —— m > = .
(A 73 B A DAL, < —e/2,t > K +1,1, =1}

A simple rewriting of time then concludes the proof for theeafe = 0. We use the slight abuse
of notationy=2(z) := [¢p~1(z)]2, andy(oo) = lim, o, ¥(x). Fore > 0 we have

me;”(t DG < —¢/2, ft_1}<2m EVDL{AY] > e/2)
:Z/ P (v D) > </2) > o) do
0
e(5)P@EI> 5+ [ Pz @)
() ) w(e/2) (7 ) }
(c0) =2 (a
2 ( ) e / 267UT%dx}
P(e/2)

16 /e ¥(o0) 2
S R A —
2 we/2) e 1

>
{

Making the change of variable= (u) concludes the proof of Theoredn |

Theorem? follows from TheorenB with specific choices forp. First, takey(z) = 22, ¢ €
(0,1] and observe that the integral i6) can be computed as

/ 224:1: de = —4log (1 — ’%)<81og(3)

e/2ez —1

which gives 8). Whene = 0, sincelE 1/;(|ﬁ§1)|) = v/t, Equation {) directly gives &).
Next, we turn to the the slightly more sophisticated potgritinction:(z) =
serve that for any: > 0,

Toattz7ey - OP-

2x T 2z

V() = log(4z/e) log?(4z /&) = log(4z/¢e)
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Therefore, foe € (0, 1], the integral in §) is bounded from above by

(o] 4 1 8 o0 -
/ z — dx §/ 7@0—}—/ 96772(11'
e/2 log(4z/e)[eT — 1] e/2 zlog(4z/e) 1

< 8loglog(4/¢) — 8loglog2 + 4
< 8loglog(4/e) + 7.

It concludes the proof ofy).

4. Lower bounds

We conclude our study of bounded regret in stochastic nanitied bandits with three different
lower bounds. For simplicity, we phrase these results festmple two-armed case. First we show
with Theorenb that if one knows both*) andA, then the best attainable regret is of ordgn,
which matches (up to a numerical constant) the result of fldrad. Next we show in Theoreré
that the sole knowledge @k leads to a lower bound of ord&rg(nA?)/A. This theorem implies
that the bounds oAudibert and Bubeck2009, Auer and Ortnef2010Q andPerchet and Rigollet
(2017 exhibit a tight dependence iA (for the two-armed case), unlike the famous result of
Lai and Robbing1985. Moreover, compared to the prooflodi and Robbing1985, our approach
is (i) much simpler, (ii) non-asymptotic and (iii) it is natdited to a certain class of policies. Fi-
nally we show in Theorer@ that if one only knows,(*) then a regret of ordéi’gA(—") is unavoidable
(for some value ofA).

Our proof strategy consists in rephrasing arm selection lagathesis testing problem, and
then use well-known lower bounding techniques for the maimisk of hypothesis testing. For
instance, the proof of Theorefnand Theoren® builds upon the following result; se@gyabkoy
2009 Chaper 2) for a proof, or Lemmabelow with A chosen to be a Dirac masslatRecall that
the Kullback-Leibler divergence between two positive nueasp, p’ with p’ absolutely continuous
with respect to, is defined as

d d
KL(p.f) = [ 108 (52 ) dp = Ex-pto (F030 )

Lemma 4 Letp,, p1 be two probability distributions supported on someXewith p; absolutely continuous
with respect tqog. Then for any measurable functign: X — {0, 1}, one has

P (6(X) = 1) + P, (U(X) = 0) 2 5 exp (~KL{po, 1))

In this section we denote by = 11 ® v, the product distribution that generates the rewards
from v; when pulling armj € {1, 2}. The regret of a policy that observes such rewards is denoted
by R, (v). Finally letP, denote the probability associatedtcand byIE, the corresponding
expectation.

Hereafter, we favor rewards that are normally distributedduse they lead to simpler calcula-
tions of the KL-divergence. However, our lower bounds rantdithe same order for all families of
distributions{p,, },, with expected valug and such thakL(p,, — p,/) > C(n— u’)? for some ab-
solute constant’ > 0. This is the case, for example, of the Bernoulli distribntwaith parametey
as long ag: remains bounded away from 0 and 1; see, eRjgdllet and Zeevyi201Q Lemma 4.1).

The first lower bound illustrates that when one knows theitistions up to a permutation, the
best one can hope for is a bounded regret of otdé.
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Theorem 5 Letry = NV(0,1) @ N(—A,1) andv = N(—A,1) ® N(0,1). Then for any policy, and for
everyn > 1,

ma (o (), Ra(#)) > 7

Proof In this proof we assume that the policy has accegsréavards from each arm at time step

t. Clearly this full information setting is simpler than tharalit setting, and thus a lower bound for

the former implies one for the latter. Using Lem#ehas well as straightforward computations one

obtains
mase (R, (0), Ru(0)) > % (Rul) 4 ) = 5 S (Pl =2) 4 Pusfi = 1)
> 8 iexp(—KL(V@)t 1t Zexp —tA?) > L
— 4 4N

t=1 t=1
|

The above theorem ensures that the regret bound of Thebtems the correct dependencedn
This is quite surprising as the original bound lcdi and Robbing1985 indicates that without
the knowledge of.*) and A, one can incur a regret that diverges to infinity at a logarith
rate. The next result shows that this logarithmic regregaaly appears when one does not know
the value ofu*). Thus the knowledge ofA without the knowledge of.(*) is not sufficient to
obtain a bounded regret. Moreover, the following lower lburatches the upper bounds (for the
two-armed case) dkudibert and Bubeck2009, Auer and Ortnef2010Q andPerchet and Rigollet
(2011), thus proving their optimality.

Theorem 6 Letv = §p @ N'(—A, 1) andv’ = o ® N (A, 1). Then for any policy, and any > 1,

log(nA?/2)

max (R (v), Rn (V) 2 — %

Proof First note that
max (R, (v), R, (V")) > R,(v) > AE,Tz(n).

Furthermore, denoting hy; (respectively;) the law of the observed rewards up to timenderv
(respectively under’), and following the same computations than in the previgosf one also
obtains

A n
max (R, (v), R Z 2:: —KL(,1})).
Since under, arm 1 is uninformative, it follows from basic calculatidrat
KL(vt,v)) = 2A%E, Th(t) .

The above three displays yield

max (R (v), Ru (V') > % (]EUTQ(n) + %exp(—2A2]E,,T2 (n)))

log(nA2/2) '

A n
> min — - —2A? >
> min (:c + 1 exp(—2A a:)) > A

ze[0,n] 2
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Finally we prove that the knowledge pf*) without the knowledge oA\ is not sufficient either
to obtain a bounded rescaled regfeR,,. This result is more difficult, and falls within the more
general topic of lower bounds for adaptive rates. First wedrte generalize Lemn¥ato deal with
both a composite alternative, and a rescaled risk. The ftbfs result is standard and postponed
to the appendix.

Lemma 7 Letpy andpa,A € R be probability distributions supported on some &&twith pa absolutely
continuous with respect tay. Let A be a finite positive measure dR. Then for any measurable function
¥ : X — {0,1}, one has

1 _
Pt (000) = 1)+ [ APy (5(0X) = 0)AN(A) = - exp (<KL (pn.p)
wherep is the positive measure oti defined by = [ ApadA(A) andCy = 1 + [ AdA(A).
Note that| ApaA(A) is not a probability distribution, however it is a positiveeasure thus
the Kullback-Leibler divergence in the above lemma is vaelfined.

Theorem 8 Letyy = N(0,1)®@N(—1,1), andva = N(—A,1)®N(0,1), A € (0,1]. Then for any policy,
and anyn > 1,

1
max | R,(vo), sup AR,(va) | > =log(n/139).
A€(0,1] 2

Theorem8 can be read as follows: for any policy, and any> 1, there existsA € (0,1] and a
problem instance with gafs and optimal value:*) = 0 such that on this problem one has

< log(n/139)

- 2A '

Proof Similarly to the previous proof we defing ; andva , as the law of the observed rewards
up to timet. Lemma? yields

max (Rn(uo), sup ARH(VA)> > % iexp <—KL <I/07t,/AI/A7td)\(A))) . (8)

Ry,

A€(0,1]

Forv € {vy,va}, define the average rewards for arrma {1, 2} by u,(f). Therefore,u,(j)) = u,(,i) =

0, uf,ﬁ) = -1 anduf,lA) = —A. Recall that a policy{I;}:>1 taking values in{1,2} generates a
sequence of rewardg(“),t > 1 distributed according to € {1y, va}. The joint density (with
respect to the Lebesgue measuig) of (Yl(“), .. .,Yt(m) € R', wherev € {va,1p} can be

computed easily using the chain rule for conditional déessitlt is given by

t

__ 1 1 (I) _(1)y2
th—WeXP(—§;(Ye My ))

Choosingr = va andv = vy respectively, it yields

¢
dva, I I, 1 I I
Wt (09 Y8) — oxp (= 157 [0 — f0)7 - (70 - ig0)

—exp (=5 D[ A2 - 2] - 5 3 () - (v 1)
{=1 {=1
I[:l I@ 2
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where we denote for simplicity

) 1 7 .
TO = Tyt +1) Z]l{[g—z} and i =al) = ==Y v ie{1,2}.

T® =1
Iy=1
Dropping the dependency (rYl(h), cey Yt(“)) from the notation, it yields
) )
/Ad]V/A LAN(A) = exp <TT(2Q(2) + 1)> /Aexp <—TT(2AQ(1) 4 A2)> dA(D),
0,t

and thus

KL (Vojt,/AVA,td)\(A))

@) &
~E,, (TT@@(?) +1) +log </ A exp <—TT(2A;1(1> + A2)> dA(A)))

1 T
= 5IE,,OT<2> —IE,, log ( / Aexp (-T(mm” + AQ)) d/\(A)>

where the last line follows standard computations. Nexfpliows from the Cauchy-Schwarz
inequality that the function

x +— log </ Aexp(<p(A)a:)d/\(A)>
A
is convex for any functiogp. Together with the Jensen inequality, it yields
T
IE,, log ( / Aexp (-T(mml) + AQ)) d/\(A)>
7@
> log ( / Aexp (—]El,oT(ZAﬂ(l) + A2)> d)\(A))

o [ 3o (=) ax)

Definer = IE,, 7" and let\ be the uniform distribution oft), 1/,/7]. Sinceue=""/2 > /2 for
0<u<1,ityields

/Ae VOT(I)AQ dA(A)L/l exp(—u?/2)du > ——
Xp —\/;Ouxpu u_4\/;,

Thus we have proved that

1
KL (V()yt,/ AVA_’tdA)
0

Plugging this into §) one obtains

IN

1
5JEUOT@) + log(44/IE,, TM)

1 1
< iEl/oTQ(n) t3 log(16n).

max (Rn(uo), sup ARn(uA)> > %exp (—%]EVUTQ(H)> > — \/— (_%]EVOTQ(TL)> :

A€(0,1]

10
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where we use the fact that> 1, which impliesC) < 3/2 < 2. On the other hand one also has
R, (vp) > E,,T2(n)

Therefore

1 ( LD

1
max | R,(vg), sup AR,(va) | > min —(z+ *— exp(—x/?)) = —log(n/139).
Ae(0,1] zel0,n] 2 16 2

Theorem6 and8 have important consequences on éxploration-exploitation tradeoffnen-
tioned in the introduction. Indeed, consider the full imf@tion case where at each round, the agent
observes the reward of both arms. In this case, it is not ltasg¢ that the policy that indicates
to pull the arm with the best average reward has boundedtref@der1/A. Therefore, the
knowledge ofA or 1(*) alone does not alleviate the price for exploration. Howgwéen both are
known, it vanishes (see Theorein
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BOUNDED REGRET IN STOCHASTIC BANDITS

Appendix A. Proof of Lemma 7

Throughout the proof, Radon-Nikodym derivatives oxeare taken with respect to a common but
unspecified reference measure. It does not enter our findt.réfollows from Fubini’'s Theorem
that

P (00X) = 1)+ [ APxep (0(X) = 0)aNA)

/ dpo —|—/ (/ AdpA> dA\(A)
Pp=1 $h=0
_ dp
dpo + dp = dpo + d—dpo
=1 P=1 =0 =1 AP0

Furthermore the last expression is clearly minimizedfor) = 1 { ahe (x) > 1} . Ityields

dp dp
/ dﬂo-i-/ d—dpo / dﬂo-i-/ —pdpo(w)
P=1 =0 ¢P0 A2 <1 dpo

:/7 dpo—f—/i dﬁ:/min(dpo,dﬁ).
dT’L>1 dp <q

Note that the latter quantity is often referred tokallinger affinityand does not depend on the
reference measure oti; see, e.g.Tsyabkov(2009, Chapter 2. Now using the Cauchy-Schwarz
inequality and the fact that

&
S

|

[ min (. dp) + [ max (o, d) = €.

we get

(/ W>2‘ </ V/min(dp, dpo) max(dp, d”O))2

< (/z min(dp, dpo)) (/I max(dp, dpo))

< C'A/min(d[), dpo).

The above three displays together yield

P (W) = 1)+ [ AP (000 =0ax&) = - ([ W)

To complete the proof, observe that the Jensen inequaétglyi

/\/m /\/Tpdpo = exp 210g /\/jopo
> exp {2/10g (\/;;i)dpo} = exp[—KL(po, p)].
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