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Abstract

We consider the problem of finding the best arm in a stochastilti-armed bandit game. The
regret of a forecaster is here defined by the gap between the mesvard of the optimal arm
and the mean reward of the ultimately chosen arm. We propdsghty exploring UCB policy
and a new algorithm based on successive rejects. We showhtss algorithms are essentially
optimal since their regret decreases exponentially ateawhtch is, up to a logarithmic factor, the
best possible. However, while the UCB policy needs the mioiha parameter depending on the
unobservable hardness of the task, the successive regaics Ipenefits from being parameter-free,
and also independent of the scaling of the rewards. As a bgyat of our analysis, we show
that identifying the best arm (when it is unique) requiresuanber of samples of order (up to a
log(K) factor)) ", 1/A2, where the sum is on the suboptimal arms Andepresents the difference
between the mean reward of the best arm and the one of.allhis generalizes the well-known
fact that one needs of order bf A% samples to differentiate the means of two distribution$wit
gapA.

1 Introduction

In the multi-armed bandit problem, at each stage, an agerib(ecaster) chooses one action (or arm), and
receives a reward from it. In its stochastic version, thearews drawn from a fixed probability distribution
given the arm. The usual goal is to maximize the cumulative sbirewards, see Robbins (1952); Auer et al.
(2002) among many others. Since the forecaster does not #rewistributions, he needs to explore (try)
the different actions and yet, exploit (concentrate itssdran) the seemingly most rewarding arms. In this
paper, we adopt a different viewpoint. We assume that afj@rean number of pulls, the forecaster is asked to
output a recommended arm. He is tharly evaluated by the average payoff of his recommended arm. This
is the so-called pure exploration problem, Bubeck et al0@20

The distinguishing feature from the classical multi-arntehdit problem described above is that the
exploration phase and the evaluation phase are separabes, there is no explicit trade-off between the
exploration and the exploitation while pulling the arms.eThrget of Hoeffding and Bernstein races, see
Maron and Moore (1993); Mnih et al. (2008) among others, isengimilar to ours. However, instead of
trying to extract from a fixed number of rounds the best agtiaging algorithms try to identify the best
action at a given confidence level while consuming the mihimaber of pulls. They optimize the budget
for a given confidence level, instead of optimizing the gyadf the recommendation for a given budget size.

We now illustrate why this is a natural framework for numes@pplications. Historically, the first oc-
currence of multi-armed bandit problems was given by médicds, see Robbins (1952). In the case of
a severe disease, ill patients only are included in the amal the cost of picking the wrong treatment is
high. It is important to minimize the cumulative regret,c@rthe test and cure phases coincide. However,
for cosmetic products, there exists a test phase separatedtie commercialization phase, and one aims
at minimizing the regret of the commercialized product eatthan the cumulative regret in the test phase,
which is irrelevant.

Another motivating example concerns channel allocatigrmiobile phone communications. During a
very short time before the communication starts, a cellphcen explore the set of channels to find the
best one to operate. Each evaluation of a channel is noisytheand is a limited number of evaluations
before the communication starts. The connection is themclaed on the channel which is believed to be the
best. Opportunistic communication systems rely on the dde® Again the cumulative regret during the



Parameters available to the forecaster: the number of rouads the number of armk’.
Parameters unknown to the forecaster: the reward distributians. , vx of the arms.

Foreachround =1,2,...,n;
(1) the forecaster choosésc {1,...,K},
(2) the environment draws the rewakd, r, () from v;, and independently of the past
given/;.

At the end of the: rounds, the forecaster outputs a recommendafipg {1,..., K}.

Figure 1: The pure exploration problem for multi-armed hend

exploration phase is irrelevant since the user is only @steed in the quality of its communication starting
after the exploration phase.

More generally, the pure exploration problem addresseddbign of strategies making the best possible
use of available resources in order to optimize the perfommaf some decision-making task. That is, it
occurs in situations with a preliminary exploration phasehich costs are not measured in terms of rewards
but rather in terms of resources that come in limited budtet lumber of patients in the test phase in the
clinical trial setting and the time to connect in the comneation example).

2 Problem setup

A stochastic multi-armed bandit game is parameterized éyntimber of armg(, the number of rounds (or

budget)n, andK probability distributions/, . .., vk associated respectively with arim. .., armK. These
distributions are unknown to the forecaster. Fet 1,...,n, at roundt, the forecaster chooses an afm
in the set of armq1, ..., K'}, and observes a reward drawn from independently from the past (actions

and observations). At the end of therounds, the forecaster selects an arm, dendtecnd is evaluated in
terms of the difference between the mean reward of the opimaand the mean reward gf,. Precisely, let
p1,-- -, px be the respective meansuaf, . . ., vk. Letp” = maxycqy . xy ik The regret of the forecaster
is

=1 = g,
For sake of simplicitywe will assume that the rewards are[in 1] and that there is a unique optimal arm
Let:* denote this arm (sqy;+ = p*). Fori # i*, we introduce the following suboptimality measure of arm

A =p" — i

For reasons that will be obvious later, we also deflpe as the minimal gap
A+ = min A;.
i glélirg i

We introduce the notatiofi) € {1, ..., K} to denote theé—th best arm (with ties break arbitrarily), hence
A = A(1) = A(2) < A(3) <...= A(K)'
Let e,, denote the probability of error, that is the probabilitytttree recommendation is not the optimal one:
en = P(J, #1i%).
We haveEr,, = Z#i* P(J, = 1)A,;, and consequently
Aje, <Er, <e,.

As a consequence of this equation, up to a second order ¢gremdEr,, behave similarly, and it does not
harm to focus on the probability,.

For each arm and all time rounds > 1, we denote byl;(t) the number of times armwas pulled
from roundsl to ¢, and by X; 1, X; o, ..., X; 1) the sequence of associated rewards. Introdﬁgg =
% >, X, + the empirical mean of armafter s pulls. In the following, the symbat will denote a positive
numerical constant which may differ from line to line.



The goal of this work is to propose allocation strategiesiwihall regret, and possibly as small as the best
allocation strategy which would know beforehand the disitibnsz, ..., vx up to a permutation. Before
going further, note that the goal is unachievable for altriistionsv,...,vk: a policy cannot perform
as well as the “oracle” allocation strategy in every patticicases. For instance, when the supports of
vy,...,vK are disjoint, the oracle forecaster almost surely idewtifie arm by a single draw of it. As a
consequence, it has almost surely zero regret forrapy K. The generic policy which does not have any
knowledge on thé distributions cannot reproduce this performance for Anguple of disjointly supported
distributions. In this work, the above goal of deciding adlwas an oracle will be reached for the set of
Bernoulli distributions with parameters {6, 1), but the algorithms are defined for any distributions sufgubr
in [0, 1].

We would like to mention that the cagé = 2 is unique and simple since, as we will indirectly see,
it is optimally solved by the uniform allocation strategynststing in drawing each arm/2 times (up to
rounding problem), and at the end recommending the arm Wwéthighest empirical mean. Therefore, our
main contributions concern more the problem of the buddet¢ation whenk > 3. The hardness of the task
will be characterized by the following quantities

K

1 A9
H, = ; A—? and Hy, = ie{IFEi(K} ZA(Z.).

These quantities are equivalent up to a logarithmic fadtareswe have (see Section 6.1)
Hy < Hy <log(2K)Hs. 1)

Intuitively, we will show that these quantities are indebdmcteristic of the hardness of the problem, in the
sense that they give the order of magnitude of the numberroples required to find the best arm with a

reasonable probability. This statement will be made peeirighe rest of the paper, in particular through

Theorem 2 and Theorem 4.

Outline. In Section 3, we propose a highly exploring policy based opengonfidence bounds, called
UCB-E (Upper Confidence Bound Exploration), in the spiritllB1 Auer et al. (2002). We prove that
this algorithm, provided that it is appropriately tuneds taa upper bound on the probability of eregy of
orderexp( — cHLl) The core problem of this policy is the tuning of the parametée optimal value of
the parameter depends &, which has no reason to be known beforehand by the forecasigmwhich, to
our knowledge, cannot be estimated from past observatighsufficiently high confidence in order that the
resulting algorithm still satisfies a similar bound @n

To get round this limitation, in Section 4, we propose a semmw policy called SR (Successive Rejects)
that progressively rejects the arms which seem to be subaptiThis algorithm is parameter-free and its
probability of errore,, is at most of ordeexp ( — m) SinceH,; < H; < log(2K)H>, up to at most

a logarithmic term in(, the algorithm performs as well as UCB-E while not requiring knowledge of{; .

In Section 5, we prove thdl; and H, truly represent the hardness of the problem (up to a logaiith
factor). Precisely, we consider a forecaster which knowesréward distributions of the armup to a per-
mutation When these distributions are of Bernoulli type with paramet [p, 1 — p| for somep > 0, there
exists a permutation of the distributions for which the ioitity of error of the (oracle) forecaster is lower
bounded byxp (— m)

Section 6 gathers some of the proofs. Section 7 provides saperiments testing the efficiency of the
proposed policies and enlightening our theoretical resie also discuss a modification of UCB-E where
we perform a non-trivial online estimation &f;. We conclude in Section 8.

Example. To put in perspective the results we just mentioned, let ussider a specific example with
Bernoulli distributions. Let;, = Ber (1), andy; = Ber (3 — %) fori € {2,...,K}. Here, one can
easily check thafl, = 2K2%. Thus, in this case, the probability of missing the best af®Ris at most of

orderexp ( — W) Moreover, in Section 5, we prove that there does not exist@ecaster (even

with the knowledge of the distributions up to a permutatiwith a probability of missing the best arm smaller
thanexp ( — 75% ) for infinitely manyn. Thus, our analysis finds that, for this particular rewasdrébutions,

the number of samples required to find the best arm is at leastder of) K%, and SR actually finds it
with (of order of)log(K)K?X samples.

3 Highly exploring policy based on upper confidence bounds

In this section, we propose and study the algorithm UCB-Ecrilesd in Figure 2. Whem is taken of
orderlog n, the algorithm essentially corresponds to the U@Blicy introduced in Auer et al. (2002), and
its cumulative regret is of orddngn. Bubeck et al. (2009) have shown that algorithms having atmo



Parameter: exploration parameter> 0.
Forie {1,..., K}, letB;, .= X, .+ /2 fors>1andB;o = +oc.

Foreachround =1,2,...,n:
Ky Bz e-1)-

.....

LetJ, € argmax;c(i, . g} Xi,1;(n)-

Figure 2: UCB-E (Upper Confidence Bound Exploration) altioni.

logarithmic cumulative regret, have at least a (non-cutivdaregret of order, =" for somey > 0. So taking
a of orderlog n is inappropriate to reach exponentially small probabibityerror. For our regret notion, one
has to explore much more and typically use a parameter whiekgentially linear im. Precisely, we have
the following result, the proof of which can be found in Sentb.2.

Theorem 1 If UCB-E is run with parameted < a < 252K then it satisfies

H)
2a
en < 2nKexp<— 25)
In particular for a = 33 27X, we have, < 2nK exp (- {571 )-

The theorem shows that the probability of error of UCB-E imast of ordeexp(—ca) for a > logn. In
fact, Theorem 5 in Appendix A shows a corresponding lowemidoun view of this, as long as < % "IglK,
we can essentially say: the more we explore (i.e., the larg® the smaller the regret is. Besides, the small-
est upper bound on the probability of error is obtaineddaf ordern/H;, and is therefore exponentially
decreasing witle. The constanf{,; depends not only on how close the mean rewards of the two bast a
are, but also on the number of arms and how close their meaardeg/to the optimal mean reward. This
constant should be seen as the order of the minimal numfrwhich the recommended arm is the optimal
one with high probability. In Section 5, we will show that, is indeed a good measure of the hardness of
the task by showing that no forecaster satisfies< exp ( — ;I—’;) for any distributions/q, . .., vg, where we
recall thatH, satisfiesH, < Hy < log(2K)Hs.

One interesting message to take from the proof of Theoremthais with probability at least —
2nK exp( — 3—“) the number of draws of any suboptimal ains of orderaA;Q. This means that the
optimal arm will be played at least — caH;, showing that for too smakli, UCB-E "exploits” too much
in view of our regret target. Theorem 1 does not specify hawalgorithm performs whea is larger than

%’E—K Nevertheless, similar arguments than the ones in the gtamf that for large, with high probabil-
1

ity, only low rewarding arms are played of ordaat&i‘2 times, whereas the best ones are all drawn the same
number of times up to a constant factor. The number of thesiesly drawn arms grows with. In the limit,
whena goes to infinity, UCB-E is exactly the uniform allocationaggy studied in Bubeck et al. (2009).
In generat, the uniform allocation has a probability of error which daglower and upper bounded by a

2
guantity of the formexp ( — c"?g* ) It consequently performs much worse than UCB-Edot 3—2 "ghK,
sinceH; < KA;Q, and potentiallyH; < KAZ:2 for very large number of arms with heterogeneous mean

rewards.

One straightforward idea to cope with the absence of an @tading us the value off; would be to
estimate online the parametdy and use this estimation in the algorithm. Unfortunately,weze not able
to prove, and do not believe that, this modified algorithmegalty attains the expected rate of convergence.
Indeed, overestimatingf, leads to low exploring, and in the event when the optimal aas djiven abnor-
mally low rewards, the arm stops being drawn by the polisye#itimated mean reward is thus not corrected,
and the arm is finally not recommended by the policy. On thearaoy) underestimating{, leads to draw
too much the suboptimal arms, precluding a sufficiently esteuestimation of the mean rewards of the best
arms. For this last case, things are in fact much more sutzfewhat can be retranscribed in these few lines,
and we notice that keeping track of a lower boundfbnwould lead to the correct rate only under appropri-
ate assumptions on the decrease of the sequtpgek < {1,..., K}. In Section 7 we push this idea and

We say “in general” to rule out some trivial cases (like when the rewisttdilolitions are all Dirac distributions) in
which the probability of erroe,, would be much smaller.



LetA; = {1,...,K},log(K) =  + XK, L, ng =0andfork € {1,..., K — 1},

B { 1 n—K —‘
log(K) K+1—k|

Foreachphase=1,2,..., K — 1.
(1) Foreach € Ay, select arm for ny, — nx—; rounds.

(2) LetAyy1 = Ap\argmineca, )?mk (we only remove one element frody,, if there
is a tie, select randomly the arm to dismiss among the worst arms).

Let J,, be the unique element of .

Figure 3: SR (Successive Rejects) algorithm.

propose a way to estimate onlii§ , however we solely justify the corresponding algorithm kgeriments.
In the next section we propose an algorithm which does né¢isitbm these limitations.

4 Successive Rejects algorithm

In this section, we describe and analyze a new algorithm SsRRdessive Rejects), see Figure 3 for its precise
description. Informally it proceeds as follows. First tHgagithm divides the time (i.e., the rounds) in

K — 1 phases. At the end of each phase, the algorithm dismissesrtheith the lowest empirical mean.
During the next phase, it pulls equally often each arm whigh ot been dismissed yet. The recommended
arm J, is the last surviving arm. The length of the phases are dérefliosen to obtain an optimal (up to

a logarithmic factor) convergence rate. More precisely armm is pulledn; = [@%K) ”;(K} times, one
n2 = =45 %1 | imes, ..., and two arms are pulledc 1= (@im n—K times. SR does not exceed

the budget of. pulls, since, from the definitiolg(K) = £ + ZZ 5 7 We have

log(K ( ZK+17 ) "

For K = 2, up to rounding effects, SR is just the uniform allocatiaatsgy.

ny+...+ng_1+ng_ 1_K+

Theorem 2 The probability of error of SR satisfies

K(K —1) ( n—K )
en < ——exp| ~=————— | .
2 log(K)HQ

Proof: We can assume that the sequence of rewards for each arm is bed@re the beginning of the game.
Thus the empirical reward for arimafter s pulls is well defined even if armhas not been actually pulled
times. During phasé, at least one of thé worst arms is surviving. So, if the optimal arinis dismissed
at the end of phask, it means thatXl* e < MAXGe (K, (K—1),...,(K+1—k)} ka By a union bound and
Hoeffding’s inequality, the probability of erret, = P(Ax # {i* }) thus satisfies

K—1
< Z (X e < Xy

k=1 i=K+1
K-1 K
< P(X (i) — i+ 1= Xie e 2 D)
k=1 i=K+1—k
K-1 K K-1
<3 Y e (omal) < D ke (i)
k=1 i=K+1—k k=1



We conclude the proof by noting that by definitiorvgf and Hs, we have
n—K 1 n—K
>

Y > — — .
FERHR) = 00 (K) (K +1— k WAZ,y  log(K)H,

)

The following theorem provides a deeper understanding wf 8B works. It lower bounds the sampling
times of the arms and shows that at the end of piasee have a high-confidence estimation®fx ;)
up to numerical constant factor. This intuition will proxelie useful in Section 7, see in particular Figure 4.

Theorem 3 With probability at least — £~ exp (- %) for any armj, we have
- K
) 2 Ay ©
Og( ) 288

With probability at leastl — K% exp ( — ﬁ) foranyk € {1,...,K — 1}, the dismissed arm
l, = Apa1 \ A at the end of phask satisfies

1 1 - . 3

1 O0+1-k) = 58 < Jmax K = Xon < 580 < 3B(K41-1)- 4)
Proof: We consider the eveston which for anyk € {1,..., K — 1}, for any arm¢ in the worstk arms, and

any armj such thaRA; < Ay, we have

~

Xjn, — Xen, > 0.

n—K

This event holds with probability at least— £~ exp ( — =0T

union bound and (2), we have

K-1
Z Z P(‘)?jmk - )?Z,nk < O>

k=1 e {(K),(K—1),...,(K+1—k)}

), since, from Hoeffding’s inequality, a

720 <Ay
K—1
< Z exp ( —ng(Ap — Aj)z)
k=1 (e{(K),(K—1),...,(K+1—k)}
j:2A]‘SAg
K—1 A2 3
_k K - K
< kKexp(—nk(KJrlk))<exp<—n>.
4 2 4log(K)H,

E
I

1

During phaset, at least one of thé worst arms is surviving. On the evefif this surviving arm has an em-
pirical mean at the end of the phase which is smaller thanrteeobany arny satisfying2A; < A g 1-x)-
So, at the end of phagg any armj satisfying2A; < A(Kﬂ,k) cannot be dismissed. Now, for a given arm
4, we consider two cases depending whether there exms{l LK} such thatd (,,,_1) < 245 < Agy.
First case.If no suchm exists, then we havA>T;(n) > A )t = m, so that (3) holds

Second casdf suchm exists, then, from the above argument the @rcannot be dismissed before the end
of the phase{ + 2 — m (since there exist& + 1 — m arms¢ such thatA, > 2A ;). From (2), we get

AF - K - K
A?T](n) > A?nK+2_m > 2 J l > i ,
A(mfl) log(K)Hy — 4log(K)H>

which ends the proof of (3). We have seen that at the end ofghasly armj satisfying2A; < Ax 1)
cannot be dismissed. Consequently, at the end of phatbe dismissed arry, = Ay \ Ay satisfies the
left inequality of

1

A& +1-k) = Do S 2A(k41-k)- (5)
Let us now prove the right inequality by contradiction. Gdesk such thalA g 1_x) < Ag,. Arm £
thus belongs to thé — 1 worst arms. Hence, in the firdét— 1 rejects, say at the end of phalsg an arm
Jwith Aj < A(g 1) is dismissed. From the left inequality of (5), we gBtx 1) < 24, < Ay,



On the event, we thus have)A(j,nk/ — )?gk_’nk, > 0 (since/; belongs to th&’ worst arms by the previous
inequality). This contradicts the fact thais rejected at phagé. So (5) holds.

Now let£’ be the event on which for any arjnand anyk € {1,. -1} ]X e — M| < M
Using again Hoeffding’s inequality, a union bound and (R)s tevent holds with probability at Iea$t—

2K (K — 1)exp ( — M) We now work on the evert N £, which holds with probability at least

1— K3exp(— ﬁ) From (5), the dismissed arfy at the end of phask satisfies
Ak 1k < B,

’X&c,nk - /'Lék} S 8 =4 .

Besides, we also have
Akt1-k) < Ay,
8 - 4

{ m%«i(k Xm,nk - ,LL(1)| S
Consequently, at the end of phaseve have

1 1 ~ - 3
ZA(K-H—k) < §Aek < max Ko — Xt < éAzk < 3A(K41-k)-

5 Lower bound

In this section we provide a very general and somewhat simgriower bound. We prove that, when the
reward distributions are Bernoulli distributions with izarces bounded away frof then for any forecaster,
one can permute the distributions on the arms (before the gaants) so that the probability of missing the
best arm will be at least of ordexp ( "”) Note that, in this formulation, we allow the forecastektmw

the reward distributions up to a permutation of the inde¢émlvever, as the lower bound expresses it, even
in this relatively easier case, the quantify is a good measure of the hardness of finding the best arm

Theorem 4 (Lower Bound) Let vy, ..., vk be Bernoulli distributions with parameters p,1—pl,pe€
(0,1/2). For any forecaster, there exists a permutation {1,..., K} — {1 ., K'} such that the proba-
bility error of the forecaster on the bandit problem defm@d?b =Vo(1),- - VK = Vg(k) Salisfies

(5+ 0(1))n)
p(1 —p)H> '

where the ¢1) term depends only o, p andn and goes td) whenn goes to infinity (see the end of the
proof).

€n > exp (_

The proof of this result is quite technical. However, it imple to explain why we can expect such a
bound to hold. Assume (without loss of generality) that ttresaare ordered, i.€u; > o > ... > ug, and
that all rewardle nte {1 .,n} i€ {l,...,K}, are drawn before the game starts. Let{2,..., K}.

If X1 i < X, nsi < Xy for all j € {2,...,7 — 1}, then it seems reasonable that a good forecaster
should not pull armi more tham: /i times, and furthermore not select it as its recommenda@ure can see
that, the probability of the event we just described is oforf exp(—c(n/i)A?). Thus, with probability at
leastexp(—cn/ maxo<;<k 1A 2), the forecaster makes an error, which is exactly the lowantave pro-
pose. However, note that this argument does not yield ameas®proof strategy, in particular we assumed a
"good” forecaster with a "reasonable” behavior. For ins&rit is obvious that the proof has to permute the
arms, since a forecaster could, despite all, chooselaasnits recommendation, which imply a probability
error of0 as soon as the best arm is in position

The main idea of our proposed proof goes as follows. A bardiblpm is defined by a product distri-
butionr = 11 ® --- ® vk. One can consider that at the beginning of the gam&.-tuples of rewards are
sampled from this product distribution. This defines a talfle X' rewards. A forecaster will explore a sub-
part of this table. We want to find a permutatiomf {1, ..., K'} so that the indices of the best arm foand
U =v,1)®- - QVy g are different and such that the likelihood ratio of the exgtbpart of the table of K
rewards under andv is at least of ordesxp(—cn/H>) with probability with respect to®™ lower bounded
by a positive numerical constant. This would imply the cleghbound. Remark that, the "likelihood cost” of
moving distributiony; to armj depends on both the (Kullback-Leibler) distance betweerdistributions/;
andv;, and the number of times arynis pulled. Thus, we have to find the right trade-off betweevimp



a distribution to a "close” distribution, and the fact thia¢ target arm should not be pulled too much. To do
this, we "slice” the set of indeces in a non-trivial (and naotitive) way. This "slicing” depends only on the
reward distributions, and not on the considered forecasten, to put it simply, we move the less drawn arm
from one slice to the less drawn arm in the next slice. Notetti@mpreceding sentence is not well defined,
since by doing this we would get a random permutation (whicbooirse does not make sense to derive a
lower bound). However, at the cost of some technical diffies] it is possible to circumvent this issue.

To achieve the program outlined above, as already hintedse¢he Kullback-Leibler divergence, which
is defined for two probability distributions p’ on [0, 1] with p absolutely continuous with respectgdbas:

KL ) = | g (@) dnto) = Exaytox ( 51000) .

Another quantity of particular interest for our analysis is
_ i dp
KLi(p,p') = Zlog (dp,(Xzs)> .
s=1

In particular note that, if armhas distributiorp, then this quantity represents the (non re-normalized)remp
ical estimation ofKL(p, p’) aftert pulls of armi. LetP, andE, the probability and expectation signs when
we integrate with respect to the distributiof®”. Another important property is that for any two product
distributionsy, v/, which differ only on index, and for any eventi, one has:

IEDV(A) - EV’]]-A €exp <_ﬁi,T,,(n) (Vzl'a VZ)) 5 (6)

; Tin dy; T
since we havg [} ZZZ (Xi.s) = exp (— KL; 7,(n) (), 14)).

Proof: First step: Notations. Without loss of generality we can assume thas ordered in the sense that
p1 > pe > ... > ui. Moreover letL € {2,..., K} such thatd, = L/A?, thatis foralli € {1,..., K},

i/A2 < LJAS, @)

We define now recursively the following sets. ligt= 1,
) Ap
EIZ{Z:ML<Mi<NL+W}7

and forj > 1,

Ap . Ap
T2t < i S prpt T2 [
wherek; is the smallest integer (if it exists, otherwise ggt = +o00) such that|¥;| > 2|X;_,|. Let
¢ = max{j : k; < +o0}. We define now the random variabl&s, . . ., Z, corresponding to the indices of
the less sampled arms of the respective sliegs .., 3,: for j € {1, ..., ¢},

Ej{ii,u[,+

Z; € argmin T;(n).
1€X;

Finally let Z,,, € argmin;e 1, L1\ (J,} Ti(n).
Second step: ControllingT’z, (n), j € {1,...,£+ 1}. We first prove that for any € {1,...,/},
3, > L' AT 8)
To do so let us note that, by definition bf, ;, we have
2% > Hz Cpp+ ALV < <o +AL/L1/2kH1_1H
> Hz S <+ AL/L1/2’“-7‘+1“}‘ (B0 + e+ [

Now remark that, by definition again, we hale | + ... + |2, < (270D 4 ...+ 271)|%;] < |55
Thus we obtairs|;| > Hz s < pp 4 AL/Ll/Qk”l_lH. We finish the proof of (8) with the following



calculation, which makes use of (7). For any 1,
Hi:p < po+Ar/of| = [{i: A= Ap(1—1/v)}

Z {Z : \/ZAL 2 AL(I - 1/1})}‘
=|i:i>L(1-1/v)*} > L(l —(1- 1/1})2) > L/v.
Now (8) directly entails (since a minimum is smaller than aerage), forj € {1,..., ¢},
Ty, (n) < 3LF+T 1S Ty(n), ©)

’LGEj
Besides, since&,; is the less drawn arm amorig— 1 arms, we trivially have

TZe+1( ) < Li 1 (10)

Third step: A change of measure.Letr’ = v, @ vy ® - - - ® vk be a madified product distribution where
we replaced the best distribution by. Now let us consider the event

Cp = {we{1,...,n}, ie{2,...,L}, jell,....L},
ﬁi7t(ui, l/j) <t KL(Vi, Vj) + o and ﬁ17t(vL, Vj) <t I{L(Z/L7 I/j) + On},

whereo,, = 2log(p~!)/nlog(2L). From Hoeffding’s maximal inequality, we haw&, (C,,) > 1/2 (see
Appendix B). We thus have>, .~ -, P (CoN{Z1 = 21,..., Ze31 = 2¢11}) > 1/2. Moreover

note that7,, ..., Z, are all distinct. Thus there exigt+ 1 constantszy, ..., z.+1 such that, ford,, =
CoN{Z1=21,...,Z441 = ze41}, We have
1
P, (4,)> ——. 11
(An) 2L x L! (11)

Since, by definitionZ,,1 # J,, we have

An C {Jy # 2041} (12)

In the following we treat differently the caseg,.; = 1 andz,,; # 1. First, let us assume that,, = 1.
Then, an application of (6) and (12) directly gives, by déifom of A,,,

en(’/) = Pu(Jn 7£ 1) = ]Eu/]lJn;él exp ( IET—'l,Tl('n)(VLa V1)>
> E, g, exp < - I211,:/1(71)(’@, V1)>

> E,14,exp ( —op =Tz, (n)KL(vg, Vl))

1 n
> meXP (— Op — LIKL(VL7V1)>7

where we used (10) and (11) for the last equation. Now, foramye [0, 1], the KL divergence between
Bernoulli distributions of parametepsandgq satisfies

KL(Ber(p), Ber(q)) < = 0 (13)
q(1—q)
This can be seen by usirh@gu < u — 1 on the two logarithmic terms iKL(Ber(p), Ber(q)). In particular,
itimpliesKL(vr,v1) < m, which concludes the proof in the cagg; = 1.

Assume now that,; # 1. In this case we prove that the lower bound holds for a welheéefpermuted
product distribution of v. We define it as follows. Letn be the smallesf € {1,...,¢ + 1} such that
Zm = ze+1- Now we setw as follows: 0, = vy, 0, |, =V, , .. Uy = Vs, U1 = 1/21, andi; = v; for
other values of in {1, ..., K}. Remark thap is indeed the result of a permutation of the distributions.of
Again, an application of (6) and (12) gives, by definitiondf,



en(f/) - ]P)D(Jn 7é Zm)
g m—1 - .
=K, 1,,+, exp ( - KLI,Tl(n) (v, Vz1) - Z Ksz,sz (n) (sz ) Vz]-+1) - KLzm,sz (n) (Vzm yVzy ))
j=1

m—1
>E, 14, exp ( — (m +1)o, — T1(n)KL(vg,vz,) Z Tz,(n)KL(vz,,vz,.,)
Jj=1

- TZm (TL)KL(I/Zm V7, )> . (14)

From (13), the definition oE;, and since the parameters of the Bernoulli distributionsira(p, 1—p],

A2
we haVeI{L(VL,Z/Zl) S 11(17171))%7 KL(Z/Z"L, VZ1) S m, and fOf any] S {1 - 1},
1 Ap )’
KLz, vzn) < oy (u) |

Reporting these inequalities, as well as (9), (10) and (1().4), we obtain:

enl?) > Ey/mnexp<<m+1>on3p(f_2( +ZZT Ll)))

exp<—Lon—3 (1A L (” 3(LL7 1)))

SinceL < K and2K x K! < exp (2K log(K)) and from the definitions of,, and L, we obtain

1
2L x L!

en(7) > exp <—2K10g(K) — 2K log(p™")\/nlog(2K) — 5p(1—np)Hg) ’

which concludes the proof. |

6 Proofs
6.1 Proof of Inequalities(l)

Letlog(K) = 3 Ly K » +. Remark thatog(K +1) —1/2 < log(K) < log(K)+1/2 < log(2K). Precisely,
we will prove o
Hy < Hy <log(K) Ha,

which is tight to the extent that the right inequality is aiality when for somé < ¢ < 1/v/K, we have
Auy = Vicfor anyi # i*, and the left inequality is an equality if all;’'s are equal.

Proof: The leftinequality follows from: forany € {1,..., K}, H; = > 5, A* >S5S0 A > iA 2
The right inequality directly comes fro@:l 14 2 (2)+Zz 9 1@A(l < log( )maxle{17,__7K} ZA(i

6.2 Proof of Theorem 1
First step. Let us consider the event

- 1
€= {We{17...7K},se {Loondy X — pil < 5\/§}

From Hoeffding’s inequality and a union bound, we h&(€) > 1 — 2nK exp ( 5) In the following, we
prove that on the evegtwe haveJ,, = i*, which concludes the proof. Sinck is the empirical best arm,
and given that we are afy it is enough to prove that

1 a Az
< =V 1,... K
5V Ti(n) — 2’VZ€{’ K
or equivalently:
4 a
T; > ——.Vi 1,...,K}. 1
l(n)—25A?7vze{7 ’ } (5)



Second stepFirstly we prove by induction that
36 a

Ti(t) < — 5% A2 +1,Vi # " (16)

It is obviously true at timeg = 1. Now assume that the formula is true at time- 1. If I, # ¢ then
T;(t) = T;(t — 1) and the formula still holds. On the other hand[jif= 4, then in particular it means
thatBl-T(t 1) = Bi« 1,.(t—1). Moreover, since we are of) we haveB;- 1, (;—1) > p* andB; 1,—1) <

i + 8 | 71y~ Thus, we havé | 7=ty = Ai- By usingT;(t) = T;(t — 1) + 1, we obtain (16).

Now we prove an other useful formula:

4 . a 25 Lk
T;(t) > — min (A?,%(Tz(t)—l)> Vi £ 0 a7
With the same inductive argument as the one to get equat® \(e only need to prove that this formula
holds when/; = i*. By definition of the algorithm and since we are@rwhen]t = ¢* we have for alk:

/1' +7H — _,uz “ t—l

a

which implies

E(t—1)>—

25 2"

(A + 6\/ Tl 1))
We then obtain (17) by using+ v < 2max(u,v), T;(t) = T;(t — 1) andT;« (t — 1) = T;=(t) — 1.
Third step. Recall that we want to prove equation (15). From (17), we tialye to show that

2 (o) = 1) >

where we recall thaf\;- is the minimal gap\;- = min;;« A;. Using equation (16) we obtain:
Ti*(n)—lzn—l—ZTi( >n—K——aZA aAZ*2,
i i1

where the last inequality us@%Hla < n — K. This concludes the proof.

7 Experiments

We propose a few simple experiments to illustrate our theraeanalysis. As a baseline comparison we
use the Hoeffding Race algorithm, see Maron and Moore (1993%) the uniform strategy, which pulls
equally often each arm and recommend the arm with the higinegirical mean, see Bubeck et al. (2009) for
its theoretical analysis. We consider only Bernoulli digitions, and the optimal arm always has parameter
1/2. Each experiment corresponds to a different situatiortfegaps, they are either clustered in few groups,
or distributed according to an arithmetic or geometric pesgion. In each experiment we choose the number
of samples (almost) equal #d; (except for the last experiment where we run it twice, therddime with
2H, samples). If our understanding of the meanindfgfis sound, in each experiment the strategies SR and
UCB-E should be able to find the best arm with a reasonableapitiy (which should be roughly of the
same order in each experiment). We report our results in€i§guThe parameters for the experiments are as
follows:

— Experiment 1: One group of bad arnis,= 20, p2.20 = 0.4 (meaning forany < {2,...,20}, u; = 0.4)

— Experiment 2: Two groups of bad arnis,= 20, ua. = 0.42, p7.99 = 0.38.

— Experiment 3: Geometric progressidi,= 4, u; = 0.5 — (0.37)%,i € {2,3,4}.

— Experiment 46 arms divided in three group®; = 6, po = 0.42, us.4 = 0.4, pus.6 = 0.35.

— Experiment 5: Arithmetic progressioR, = 15, u; = 0.5 — 0.025¢,4 € {2,...,15}.

— Experiment 6: Two good arms and a large group of bad aikins, 20, ps = 0.48, us.00 = 0.37.

— Experiment 7: Three groups of bad armiS= 30, 2.6 = 0.45, p17.20 = 0.43, p21.30 = 0.38.

The different graphics should be read as follows: Each haesents a different algorithm and the bar’s
height represents the probability of error of this algarithThe correspondence between algorithms and bars
is the following:

— Bar 1. Uniform sampling strategy.

— Bar 2-4: Hoeffding Race algorithm with parametérs 0.01,0.1,0.3.

— Bar 5: Successive Rejects strategy.

— Bar 6-9: UCB-E with parameter= cn/H; where respectively = 1,2,4, 8.

— Bar 10-14: Adaptive UCB-E (see Figure 4) with parametets1/4, 1/2, 1, 2,4.



Parameter: exploration rate: > 0.

Definitions: Fork € {1,..., K — 1}, letng = [— #555 |, to = 0, &y = Kn1, and
fork>1,th=n1+...nk_1 —I—(K—k—I—l)nk.

Forie {1,...,K}anda > 0, letB; s(a) = X, s + /2 fors > 1 andB; o = +oc.

Algorithm: For each phase=0,1,..., K — 1:
Let H, , = K if kK = 0, and otherwise

. ~
Hi, = max YA
’ K—kt1<i<K <>’

whereA; = (maxi<j<i X;1; (1)) — Xi1i() @d< @ > is an ordering such that
A<1> S s S A<K'>-
Fort =t +1,... tkt1:

AAAAA

AAAAA

Figure 4: Adaptive UCB-E algorithm. Its intuitive justifitan goes as follows: The time pointg corre-
spond to the moments where the Successive Rejects algonitutd dismiss an arm. Intuitively, in light
of Theorem 3, one can say that at timea good algorithm should have reasonable approximationeof th
gaps between the best arm and zhgorst arms, that is the quantitié§ 1), - . ., A(x). Now with these
guantities, one can build a lower estimateff and thus also off;. We use this estimate between the time
pointst; andty.1 to tune the parameterof UCB-E.

8 Conclusion

This work has investigated strategies for finding the bestiaa multi-armed bandit problem. It has proposed
a simple parameter-free algorithm, SR, that attains optijuarantees up to a logarithmic term (Theorem 2
and Theorem 4). A precise understanding of both SR (Theonean@® a UCB policy (Theorem 1) lead
us to define a new algorithm, Adaptive UCB-E. It comes withguarantee of optimal rates (see end of
Section 3), but performs better than SR in practice {fer 1, Adaptive UCB-E outperformed SR on all the
experiments we did, even those done to make it fail). Oneilplessxplanation is that SR is too static: it does
not implement more data driven arguments such as: in a paaseyiving arm performing much worse than
the other ones is still drawn until the end of the phase eviiisitlear that it is the next dismissed arm.

Extensions of this work may concentrate on the followinghems. (i) What is a good measure of
hardness when one takes into account the (empirical) va&h Do we have a good scaling with respect
to the variance with the current algorithms or do we need tdimdhem ? (ii) Is it possible to derive a
natural anytime version of Successive Rejects (withouiguai doubling trick)? (iii) Is it possible to close
the logarithmic gap between the lower and upper boundsH@w should we modify the algorithm and the
analysis if one is interested in recommending thestopctions instead of a single one?
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Experiment 1, n=2000
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Experiment 2, n=2000
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Experiment 7, n=6000
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Figure 5: These results support our theoretical findingshefollowing sense: Despite the fact that the
experiments are very different, one can see that since we usenber of samples (almost) equal to the
hardnesdd, in all of them we get a probability of error of the same orderd moreover this probability is
small enough to say that we identified the best arm. Note higaSticcessive Rejects algorithm represents in
all cases a substantial improvement over both the naiveumistrategy and Hoeffding Race. These results
also justify experimentally the algorithm Adaptive UCBiE¢deed one can see that with the constaat 1

we obtain better results than SR in all experiments, everperément 6 which was designed to be a difficult

instance of Adaptive UCB-E.
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A Lower bound for UCB-E

Theorem 5 If 1o, ..., vk are Dirac distributions concentrated étand if 1 is the Bernoulli distribution of
parameter3 /4, the UCB-E algorithm satisfiegEr, = e,, > 4~ (a1,

Proof: Consider the ever on which the reward obtained from the first= [4a] draws of arml are equal
to zero. On this event of probability~"*, UCB-E will not draw arml more thanm times. Indeed, if it is
drawnm times, it will not be drawn another time sinég ,,, < % < Bs s for anys. On the eveng, we have
Jn # 1. |

B Application of Hoeffding’s maximal inequality in the proo f of Theorem 4
Leti € {2,...,L}andj € {1,..., L}. First note that, by definition of and since # 1,

E, KL;,(vi,v;) = t KL(v;, ;).
Sincer; = Ber(u;) andy; = Ber(u;), With p1;, 1 € [p, 1 — pl, we have

log (W)’ <log(p™1).

From Hoeffding’s maximal inequality, see e.g. (Cesa-Bmand Lugosi, 2006, Section A.1.3), we have

to bound almost surely the quantity, with,-probability at least — ﬁ we have foralk € {1,...,n},
ﬁi,t(l/i7l/j) —t KL(v;,v5) < 2log(p™!) @.

Similarly, with P, -probability at least — 515, we have for alt € {1,...,n},
ﬁu(yL,Vj) —tKL(vg,v;) < 2log(p™ ) @.

A simple union bound argument then giigs (C,,) > 1/2.



