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Abstract— Motivated by issues of security analysis for power
systems, we analyze a new problem, called optimal discovery
with probabilistic expert advice. We address it with an algo-
rithm based on the optimistic paradigm and the Good-Turing
missing mass estimator. We show that this strategy attains the
optimal discovery rate in a macroscopic limit sense, under
some assumptions on the probabilistic experts. We also provide
numerical experiments suggesting that this optimal behavior
may still hold under weaker assumptions.

I. INTRODUCTION

In this paper we consider the following problem: Let X
be a set, and A ⊂ X be a set of interesting elements in
X . One can access X only through requests to a finite set
of probabilistic experts. More precisely, when one makes
a request to the ith expert, the latter draws independently
at random a point from a fixed probability distribution Pi

over X . One is interested in discovering rapidly as many
elements of A as possible, by making sequential requests to
the experts.

A. Motivation

The original motivation for this problem arises from the
issue of real-time security analysis of a power system. This
problem often amounts to identifying in a set of credible
contingencies those that may indeed endanger the security of
the power system and perhaps lead to a system collapse with
catastrophic consequences (e.g., an entire region, country
may be without electrical power for hours). Once those
dangerous contingencies have been identified, the system
operators usually take preventive actions so as to ensure
that they could mitigate their effect on the system in the
likelihood they would occur. Note that usually, the dangerous
contingencies are very rare with respect to the non dangerous
ones. A straightforward approach for tackling this security
analysis problem is to simulate the power system dynamics
for every credible contingency so as to identify those that are
indeed dangerous. Unfortunately, when the set of credible
contingencies contains a large number of elements (say,
there are more than 105 credible contingencies) such an
approach may not possible anymore since the computational
resources required to simulate every contingency may excess
those that are usually available during the few (tens of)
minutes available for the real-time security analysis. One is
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therefore left with the problem of identifying within this short
time-frame a maximum number of dangerous contingencies
rather than all of them. The approach proposed in [FB11],
[FFBW10] addresses this problem by building first very
rapidly what could be described as a probability distribution
P over the set of credible contingencies that points with
significant probability to contingencies which are dangerous.
Afterwards, this probability distribution is used to draw the
contingencies to be analyzed through simulations. When the
computational resources are exhausted, the approach outputs
the contingencies found to be dangerous. One of the main
shortcoming of this approach is that usually P points only
with a significant probability to a few of the dangerous
contingencies and not all of them. This in turn makes this
probability distribution not more likely to generate after a
few draws new dangerous contingencies than for example a
uniform one. The dangerous contingencies to which P points
to with a significant probability depend however strongly on
the set of (sometimes arbitrary) engineering choices that have
been made for building it. One possible strategy to ensure
that more dangerous contingencies can be identified within a
limited budget of draws would therefore be to consider K >
1 sets of engineering choices to build K different probability
distributions P1, P2, . . ., PK and to draw the contingencies
from these K distributions rather than only from a single one.
This strategy raises however an important question to which
this paper tries to answer: how should the distributions be
selected up for being able to generate with a given number
of draws a maximum number of dangerous contingencies?
We consider the specific case where the contingencies are
sequentially drawn and where the distribution selected for
generating a contingency at one instant can be based on the
past distributions that have been selected, the contingencies
that have been already drawn and the results of the security
analyses (dangerous/non dangerous) for these contingencies.
This corresponds exactly to the optimal discovery problem
with expert advice described above. We believe that this
framework has many possible applications, such as web-
based content access.

B. Setting and notation

In this paper we restrict our attention to finite or countably
infinite sets X . We denote by K the number of experts. For
each i ∈ {1, . . . ,K}, we assume that (Xi,n)n≥1 are random
variables with distribution Pi such that the (Xi,n)i,n are
independent. Sequential discovery with probabilistic expert
advice can be described as follows: at each time step t ∈ N∗,
one picks an index It ∈ {1, . . . ,K}, and one observes



XIt,nIt,t
, where

ni,t =
∑
s≤t

1{Is=i} .

The goal is to choose the (It)t≥1 so as to observe as many
elements of A as possible in a fixed horizon t, or equivalently
to observe all the elements of A within as few time steps
as possible. The index It+1 may be chosen according to
past observations: it is a (possibly randomized) function of
(I1, X1,I1 , . . . , It, XIt,nIt,t

). We are mainly interested in the
number of interesting items found by the strategy after t time
steps:∑
x∈A

1

{
x ∈ {X1,1, . . . , X1,n1,t

, . . . , XK,1, . . . , XK,nK,t
}
}
.

Note in particular that it does not help to observe twice the
same interesting item.

While Algorithm Good-UCB, presented in Section II,
can be used in a more general setting (as illustrated in
Section III), for the mathematical analysis we restrict our
attention to the case of probabilistic experts with the follow-
ing properties:

(i) non-intersecting supports: A∩supp(Pi)∩supp(Pj) = ∅
for i 6= j,

(ii) finite supports with the same cardinality: | supp(Pi)| =
N, ∀i ∈ {1, . . . ,K},

(iii) uniform distributions: Pi(x) = 1
N ,∀x ∈

supp(Pi),∀i ∈ {1, . . . ,K}.
These asumptions are made in order to be able to compare
the performance of the Good-UCB algorithm to an “oracle”
policy, i.e., a virtual algorithm that would be aware, at each
time, of the probability of each item under each distribution,
and would thus be able to sample optimally. Indeed, here
such an oracle strategy consists in making a request, at each
time step, to one of the experts with the highest number of
still undiscovered interesting items.

In this setting it is convenient to reparametrize slightly the
problem (in particular we make explicit the dependency on N
for reasons that will appear later). Let XN = {1, . . . ,K} ×
{1, . . . , N}, AN ⊂ XN the set of interesting items of
XN , and QN = |AN | the number of interesting items.
We assume that, for expert i ∈ {1, . . . ,K}, PN

i is the
uniform distribution on {i}×{1, . . . , N}. We also denote by
QN

i =
∣∣AN ∩ ({i} × {1, . . . , N})

∣∣ the number of interesting
items accessible through requests to expert i.

C. Main result

This paper contains the description of a generic algorithm
for the optimal discovery problem with probabilistic expert
advice, and a theoretical result of optimality in a particular
setting. In Section II, we first depict our strategy, termed
Good-UCB. This algorithm relies on the optimistic paradigm
(which led to the UCB (Upper Confidence Bound) algorithm
for multi-armed bandits, [ACBF02]), and on a finite-time
analysis of the Good-Turing estimator for the missing mass.
In order to analyze and quantify the performance of this

strategy, we compare it with the oracle policy described
above.

The analysis is performed under the non-intersecting and
uniform draws assumptions [(i), (ii), (iii)] described above,
and in a macroscopic limit sense, that is when the size of
the set X grows to infinity while maintaining a constant
proportion of interesting items. First we show that one can
assess the performance of a strategy in this macroscopic limit
thanks to the following theorem. Let FN (t) be the number
of interesting items found by the oracle policy after t time
steps.

Theorem 1: Assume that, for all i ∈ {1, . . . ,K}, QN
i /N

converges to qi ∈ (0, 1) as N goes to infinity. Then,
almost surely, the sequence of mappings t 7→ FN ([Nt]) /N
converges uniformly on R+ to a limit denoted F as N goes
to infinity.

The proof of this theorem (as well as all the other results
in this paper) can be found in the extended version [BEG11].
Moreover, explicit expressions for the limit F can also be
found in [BEG11].

Our main result is that Good-UCB is a macroscopically
optimal policy, that is, the performances of Good-UCB tends
to the performances of the oracle policy. More precisely let
F̃N (t) be the number of interesting items found by Good-
UCB after t time steps.

Theorem 2: Assume that, for all i ∈ {1, . . . ,K}, QN
i /N

converges to qi ∈ (0, 1) as N goes to infinity. Then,
almost surely, the sequence of mappings t 7→ F̃N ([Nt]) /N
converges uniformly on R+ to the limiting proportion F
found during the same time by the oracle policy.

These results are illustrated in Section III by a few simu-
lations. In particular the experiments show that the efficiency
of Good-UCB is spectacular, and applies more generally than
under the assumptions [(i), (ii), (iii)].

II. THE GOOD-UCB ALGORITHM

We describe here the Good-UCB strategy. This algorithm
is a sequential method estimating at time t, for each expert
i ∈ {1, . . . ,K}, the total probability of the interesting items
that remain to be discovered through requests to expert i.
This estimation is done by adapting the so-called Good-
Turing estimator for the missing mass. Then, instead of
simply using the distribution with highest estimated missing
mass, which proves hazardous, we make use of the optimistic
paradigm (see [Agr95], [ACBF02] and references therein),
a heuristic principle well-known in reinforcement learning,
which entails to prefer using an upper-confidence bound
(UCB) of the missing mass instead. At a given time step, the
Good-UCB algorithm simply makes a request to the expert
with highest upper-confidence bound on the missing mass
at this time step. We start with the Good-Turing estimator
and a brief study of its concentration properties. Then we
describe precisely the Good-UCB strategy.

A. Estimating the missing mass

Our algorithm relies on an estimation at each step of the
probability of obtaining a new interesting item by making a



request to a given expert. A similar issue was addressed by
I. Good and A. Turing as part of their efforts to crack German
ciphers for the Enigma machine during World War II. In
this subsection, we describe a version of the Good-Turing
estimator adapted to our problem. Let Ω be a discrete set, and
let A be a subset of interesting elements of Ω. Assume that
X1, . . . , Xn are elements of Ω drawn independently under
the same distribution P , and define for every x ∈ Ω:

On(x) =

n∑
m=1

1{Xm = x},

Zn(x) = 1{On(x) = 0},
Un(x) = 1{On(x) = 1} .

Let pmax = max{P (x) : x ∈ Ω}, let Rn =∑
x∈A Zn(x)P (x) denote the missing mass of the interesting

items, and let Un =
∑

x∈A Un(x) the number of elements of
A that have been seen exactly once (in linguistics, they are
often called appaxes). The idea of the Good-Turing estimator
([Goo53], see also [MS00], [OSZ03] and references therein)
is to estimate the (random) “missing mass” Rn, which is
the total probability of all the interesting items that do not
occur in the sample X1, . . . , Xn, by the “fraction of appaxes”
R̂n = Un/n. This estimator is well-known in linguistics, for
instance in order to estimate the number of words in some
language [GS95]. For our particular needs, we derive (using
similar techniques as in [MS00]) the following upper-bound
on the estimation error:

Proposition 1: With probability at least 1− δ,

R̂n −
1

n
−
√

(2/n+ pmax)2n log(2/δ)

2
≤ Rn

≤ R̂n +

√
(2/n+ pmax)2n log(2/δ)

2
B. The Good-UCB algorithm

Following the example of the well-known Upper-
Confidence Bound procedure for multi-armed bandit prob-
lems, we propose Algorithm 1, which we call Good-UCB in
reference to the estimated procedure it relies on. For every
arm i ∈ {1, . . . ,K} and for every t ∈ N, denote

Oi,t(x) =

ni,t∑
s=1

1{Xi,s = x},

Ot(x) =

K∑
i=1

Oi,t(x),

Ui,t(x) = 1{Oi,t(x) = Ot(x) = 1} , Ui,t =
∑
x∈A

Ui,t(x) .

For each arm i ∈ {1, . . . ,K}, the index at time t is composed
of the estimate

R̂i,t−1 =
Ui,t−1

ni,t−1

of the missing mass ∑
x∈A\{XI1,nI1,1

,...,XIt−1,nIt−1,t−1
}

PN
i (x)

inflated by a confidence bonus of order
√

log(t)/ni,t−1.
Good-UCB relies on a tuning parameter c which is discussed
below.

Algorithm 1 Good-UCB
1: For 1 ≤ t ≤ K choose It = t.
2: for t ≥ K + 1 do
3: Choose It = arg max1≤i≤K

{
R̂i,t−1 + c

√
log (t)
ni,t−1

}
4: Observe Xt distributed as PIt and update

R̂1,t, . . . , R̂K,t accordingly
5: end for

Note that the Good-UCB algorithm is designed for more
general probabilistic experts than those satisfying assump-
tions [(i), (ii), (iii)]. In particular since we do not make the
non-intersecting supports assumption (i), the missing mass
of a given expert i depends explicitely on the outcomes
of all requests (and not only requests to expert i). Note
also that the bounds of Proposition 1 hold for all discrete
distributions. The experiments of Section III validate these
observations, and show that Good-UCB behaves very well
even when assumptions [(i), (ii), (iii)] are not met. However,
for the theoretical analysis of our algorithm, we focus on
large values of N under the non-intersecting and uniform
draws assumptions [(i), (ii), (iii)]: indeed in that case the
performance of the oracle strategy is simple and determin-
istic, so that the optimality of the Good-UCB algorithm can
be analyzed. More precisely, Theorem 2 shows that, in the
macroscopic limit, the number of items found at each time
by Good-UCB converges to the number of items found by
the closed-loop oracle strategy that knows the number of
interesting items to find with each expert, at every time, and
that may use this information to make its choice.

III. SIMULATIONS AND CONCLUSION

We provide a few simulations illustrating the behaviour
of the Good-UCB algorithm in practice. In order to illus-
trate the convergence properties shown in Section I-C, we
first consider an example with K = 7 different sampling
distributions satisfying assumptions [(i),(ii),(iii)], with re-
spective proportions of interesting items q1 = 51.2%, q2 =
25.6%, q3 = 12.8%, q4 = 6.4%, q5 = 3.2%, q6 = 1.6% and
q7 = 0.8%. Figure 1 displays the number of items found
as a function of time by the Good-UCB (solid), the oracle
(dashed) and a balanced sampling scheme simply alternating
between experts (dotted). The results are presented for sizes
N = 128, N = 500, N = 1000 and N = 10000, each
time for one representative run (averaging over different
runs removes the interesting variability of the process). The
convergence of Theorem 2 is obvious. Moreover, it can be
seen that even for very moderate values of N the Good-
UCB, although clearly distanced by the oracle, significantly
outperforms uniform sampling.

For these simulations, the parameter c of Algorithm Good-
UCB has been taken equal to 1/2, which is a rather conser-
vative choice. In fact, it appears that during all rounds of



all runs all upper-confidence bounds did contain the actual
missing mass. Of course, a bolder choice of c can only
improve the performance of the algorithm, as long as the
confidence level remains sufficient.

In order to illustrate the efficiency of the Good-UCB algo-
rithm in a more difficult setting, which does not satisfy any
of the assumptions (i), (ii) and (iii), we also considered the
following (artificial) example: K = 5 probabilistic experts
draw independent sequences of geometrically distributed
random variables, with expectations 100, 300, 500, 700 and
900 respectively. The set of interesting items is the set of
prime numbers. We compare the oracle policy, Good-UCB
and uniform sampling. The results are displayed in Figure 2.
Even if the difference remains significative between Good-
UCB and the oracle, the former still performs significantly
better that uniform sampling during the entire discovery pro-
cess. In this example, choosing a smaller parameter c seems
to be preferable; this is due to the fact that the proportion
of interesting items on each arm is low; in that case, one
can show by using tighter concentration inequalities that the
concentration of the Good-Turing estimator is actually better
than suggested by Proposition 1. In fact, this experiment
suggests that the value of c should be chosen smaller when
the remaining missing mass is small.

Perspectives

This paper introduced an original problem, optimal dis-
covery with probabilistic expert advice. We proposed an
algorithm to solve this problem, and showed its efficiency
under some assumptions on the experts.

This work can be extended along several directions. First,
it would be interesting to analyze the behaviour of Good-
UCB under less restrictive assumptions on the experts. Note
that assumptions (ii) and (iii) are used only to (considerably)
simplify the analysis of the oracle policy, and hence to
prove the optimality of Good-UCB. Removing assumption
(ii) seems fairly straightforward up to the addition of another
level of notations. On the other hand it is not clear how the
analysis could be carried out if assumption (iii) were to be
removed, though it seems reasonable to assume that Good-
UCB will still be macroscopically optimal. Assumption (i)
seems to be the most challenging to remove. Good-UCB is
designed to work even when assumption (i) is not satisfied,
but the analysis becomes more complicated because of ex-
plicit dependency between the missing mass of the different
experts.

Second, we may wonder whether it would be possible to
obtain optimal rates of convergence (in the macroscopic limit
sense) for this problem, and whether Good-UCB is optimal
in that sense too.

Finally, another macrosopic limit deserves to be investi-
gated, where the number of interesting items for each arm
remains constant, while N and n go to infinity; then, a
Poisson regime appears. The analysis of Good-UCB might be
possible by using a better concentration bound for the Good-
Turing estimator such as the Boucheron-Massart-Lugosi in-
equality [BLM09]. This could also contribute to explain

Fig. 1. Number of items found by Good-UCB (solid), the oracle (dashed),
and uniform sampling (dotted) as a function of time for sizes N =
128, N = 500, N = 1000 and N = 10000 in a 7-experts setting.

0 500 1000 1500 2000 2500
0

20

40

60

80

100

120

0 2000 4000 6000 8000 10000 12000
0

50

100

150

200

250

300

350

400

450

500

0 0.5 1 1.5 2 2.5

x 10
4

0

100

200

300

400

500

600

700

800

900

1000

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000



Fig. 2. Number of prime numbers found by Good-UCB (solid), the
oracle (dashed), and uniform sampling (dotted) as a function of time, using
geometric experts with means 100, 300, 500, 700 and 900, for c = 0.1
(left) and c = 0.02 (right).
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why, in the second experiment presented in Section III, the
parameter c should be chosen decreasing with time.
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