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CHAPTER 1

Introduction

1.1. Statistical learning theory

In a world where automatic data collection becomes ubiquitous, statisticians
must update their paradigms to cope with new problems. Whether we discuss
the Internet network, consumer data sets, or financial market, a common feature
emerges: huge amounts of dynamic data that need to be understood and quickly
processed. This state of affair is dramatically different from the classical statisti-
cal problems, with many observations and few variables of interest. Over the past
decades, learning theory tried to address this issue. One of the standard and thor-
oughly studied models for learning is the framework of statistical learning theory.
We start by briefly reviewing this model.

1.1.1. Statistical learning protocol. The basic protocol of statistical learn-
ing is the following:

• Observe Z1, . . . , Zn ∈ Z. We assume that it is an i.i.d. sequence from an
unknown probability distribution P.

• Make decision (or choose action) a(Z1, . . . , Zn) ∈ A where A is a given
set of possible actions.

• Suffer an (average) loss EZ∼P `(a(Z1, . . . , Zn), Z) where ` : A× Z → R+

is a given loss function.

Objective: Minimize (and control) the excess risk:

rn = EZ∼P `(a(Z1, . . . , Zn), Z)− inf
a∈A

EZ∼P `(a, Z).

The excess risk represents how much extra (average) loss one suffers compared to
the optimal decision.

Remark 1.1. Controlling the excess risk means finding an upper bound on rn
which holds either in expectation (with respect to the sequence Z1, . . . , Zn) or with
probability at least 1 − δ. Usually the upper bound is expressed in terms of some
complexity measure of A and `. Moreover if the upper bound depends on P one says
that it is a distribution-dependent bound, while if it is independent from P it is a
distribution-free bound.

This formulation is very general and encompasses many interesting problems.
In the following we detail a few of them.

1.1.2. Example 1: Regression estimation.

• Here the observed data corresponds to pairs of points, that is Zi =
(Xi, Yi) ∈ X × Y.

• The set of possible decisions is a set of functions from X to Y, that is
A ⊂ {f : X → Y}.
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6 1. INTRODUCTION

• The loss `(a, (x, y)) measures how well the function a : X → Y predicts y
given x. For instance if Y is a normed space a typical choice is `(a, (x, y)) =
||a(x)− y||.

In other words, in this example we have a dataset of pairs (input, output) and
we want to design a good function to predict outputs, given inputs, even for unseen
inputs (this is the problem of generalization). A popular particular case of this
setting is the linear regression problem for least squares loss. It corresponds to
X = Rd; Y = R; A is the set of affine functions on Rd, that is a(x) = wTa x+ ba for
some (wa, ba) ∈ Rd × R; and `(a, (x, y)) = (a(x)− y)2.

1.1.3. Example 2: Pattern recognition (or classification). This prob-
lem is a regression estimation task where Y = {−1, 1}. The loss is the so-called
zero-one loss, `(a, (x, y)) = 1a(x) 6=y.

One often restricts to linear pattern recognition, which corresponds to decisions
of the form a(x) = sign(wTa x+ ba) (that is one chooses a decision hyperplane). In
this setting it is common to consider (convex) relaxations of the zero-one loss such
as:

• the logistic loss: `(a, (x, y)) = log(1 + exp(−y(wTa x+ ba))),
• the hinge loss: `(a, (x, y)) = max(0, 1− y(wTa x+ ba)).

Note that the zero-one loss is not convex in (wa, ba), on the contrary to the logistic
loss and the hinge loss.

1.1.4. Example 3: Density estimation. Here the goal is to estimate the
probability distribution P. In that case A is a set of probability distributions (or
more precisely probability densities with respect to some fixed measure) over Z, and
Z is usually a finite set or Z = R (in information theory Z is called the alphabet).
The most common loss function for this problem is the log loss: `(a, z) = − log a(z).
Note that if P ∈ A, then the excess risk is exactly the Kullback-Leibler divergence
between a and P.

1.1.5. Example 4: High-dimensional linear regression under sparsity
scenario. A particular linear regression task has gained a lot of popularity in the
recent years, it can be described as follows. We assume that there exists w ∈ Rd
such that Yi = wTXi + ξi where (ξi) is an i.i.d. sequence of white noise (i.e.
E(ξi|Xi) = 0). The high-dimensional setting that we consider corresponds to the
regime where n� d. While in general the regression problem is intractable in this
regime, one can still hope to obtain good performances if the vector w is sparse, that
is if the number s of non-zero components (or approximately non-zero) of w is small
compared to the number of examples n. Thus we have s < n � d. In this setting
one often proves excess risk bounds for the loss `(a, (x, y)) = (a(x)−y)2+λ||wa||0 or
for its convex relaxation `(a, (x, y)) = (a(x)− y)2 + λ||wa||1. The resulting bounds
are called sparsity oracle inequalities.

1.1.6. Example 5: Compressed sensing. The problem of reconstruction
in compressed sensing can also be viewed as a learning problem. We assume here
that there is an unknown vector x ∈ Rd, and that we have access to x through n
noisy measurements Zi = WT

i x+ ξi where (ξi) is an i.i.d. sequence of white noise
and (Wi) is a sequence of random variables with known distribution (typically a
Gaussian distribution with a specific covariance matrix). The goal is to recover
x from the measurements in the regime where n � d (high-dimensional setting),
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under a sparsity assumption on x. Here the rules for the loss function are slightly
different from the standard statistical learning protocol. Indeed we do not evaluate
the reconstruction a(Z1, . . . , Zn) on a new example Z, but rather we look at how far
a is from the true signal x (this is the difference between prediction and estimation).
Thus a typical choice is `(a, x) = ||a− x||2.

1.1.7. Example 6: Matrix completion (or collaborative filtering). Ma-
trix completion is yet another example of high-dimensional learning. Here P is the
uniform distribution over the entries of an unknown matrix M ∈ Rm×d, and the
goal is to reconstruct the matrix M . The high-dimensional setting corresponds
to n � m × d. To make the problem feasible, a natural assumption is that M
has a rank k which is small compared to the number of examples n, thus we have
k < n � m× d. Several losses can be considered, either for the prediction version
of the problem or for the estimation version.

1.1.8. Real world examples. Statistical learning theory had many successes
in real world applications. We give here a few keywords for the most renowed ap-
plications: computer vision, spam detection, natural language processing (see in
particular Watson for Jeopardy!), bioinformatics (functional genomics), collabo-
rative filtering (see in particular the Netflix challenge), brain-computer interface,
ect.

1.2. Online learning

Despite its many successes, the statistical learning theory fails at addressing
one the key features of the new massive data: the dynamic aspect. Online learning
is an attempt to overcome this shortcoming. In these notes we mostly use the name
online optimization rather than online learning, which seems more natural for the
protocol described below.

1.2.1. Online optimization protocol. Online learning is a natural exten-
sion of statistical learning. In some sense this model can be seen as pushing to
its limit the agenda of distribution-free results. Indeed the essential difference be-
tween online learning and statistical learning, in addition to the sequential aspect,
is the fact that no probabilistic assumption is made on the dataset Z1, . . . , Zn. By
reducing the problem to its minimal struture, one can hope to attain the intrinsic
difficulty of learning. As it turns out, this change of perspective indeed proved to be
very fruitful. It had a profound impact and fundamentally changed the landscape
of modern machine learning.

Formally the online learning protocol can be described as follows. At every
time step t = 1, 2, . . . , n:

• Choose action at ∈ A.
• Simultaneously an adversary (or Nature) selects zt ∈ Z.
• Suffer loss `(at, zt).
• Observe zt.

Objective: Minimize (and control) the cumulative regret:

Rn =

n∑
t=1

`(at, zt)− inf
a∈A

n∑
t=1

`(a, zt).
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In words the cumulative regret compares the cumulative loss of the player to the
cumulative loss of the best action in hindsight. Here one strives for regret bounds
(i.e. upper bounds on Rn) independent of the adversary’s moves z1, . . . , zn.

Again this formulation is very general, and we detail now a few specific in-
stances.

1.2.2. Example 1: Online regression, online classification. At each
time step the player chooses a regression function at : X → Y and simultane-
ously the adversary selects an input/output pair (xt, yt) ∈ X × Y. The player
suffers `(at, (xt, yt)) and observes the pair (xt, yt). Here one usually restricts A to
a small class of regression functions, such as decision hyperplanes in the case of
online pattern recognition.

A particularly interesting application of this example is the problem of dynamic
pricing. Consider a vendor that serves a sequence of customer for a particular item.
For every customer t, the vendor may have some information xt about him. Based
on this information he sets a price at(xt) ∈ Y. On the other hand the customer had
a maximal price in mind yt ∈ Y that he is willing to pay for the item. In this setting
a natural loss could be `(a, (x, y)) = −a(x)1a(x)≤y. Note that in this application it
is rather unnatural to assume that the customer will reveal his maximal price yt.
This is a first example of the so-called limited feedback problems. More precisely,
here one can assume that the feedback (i.e. the observation) corresponds to the
incurred loss `(at, (xt, yt)) rather than the pair (xt, yt).

1.2.3. Example 2: Sequential investment. We consider here an idealized
stock market with d assets that we model as follows: a market vector z ∈ Rd+ rep-

resents the price relatives for a given trading period. That is, if one invests a ∈ Rd+
in the market (i.e. a(i) is invested in asset i), then the return at the end of the

trading period is
∑d
i=1 a(i)z(i) = aT z.

We consider now the problem of sequential investment in this stock market. At
every trading period t, the current total capital is denoted by Wt−1 and the player

invests its total capital according to the proportions at ∈ A = {a ∈ Rd+,
∑d
i=1 a(i) =

1} (in other words the action set is the (d−1)-simplex). Simultaneously the market
chooses the market vector zt ∈ Rd+. The new wealth at the end of period t satisfies:

Wt =

d∑
i=1

at(i)Wt−1zt(i) = Wt−1a
T
t zt = W0

t∏
s=1

aTs zs.

An important class of investment strategies for this problem is the set of con-
stantly rebalanced portfolios, which correspond to static decisions, that is at =
a,∀t ≥ 1. In other words the player rebalances, at every trading period t, his cur-
rent wealth Wt−1, according to the proportions a.
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We consider now the problem of being competitive with respect to the class of
all constantly rebalanced portfolios. One can consider the competitive wealth ratio:

sup
a∈A

W a
n

Wn
,

where W a
n = W0

∏n
s=1 a

T zs represents the wealth of the constantly rebalanced
portfolio a at the end of the nth trading period. The logarithmic wealth ratio is
thus:

n∑
t=1

− log(aTt zt)− inf
a∈A

n∑
t=1

− log(aT zt),

which is exactly the cumulative regret for the online optimization problem on the
(d− 1)-simplex and with the log-loss `(a, z) = − log(aT z).

In the case of a Kelly market (i.e. when z has exactly one non-zero component
which is equal to one), this problem is exactly the online equivalent of density
estimation (with alphabet {1, . . . , d}) for the log-loss.

1.2.4. Example 3: Prediction with expert advice. This example is par-
ticularly important, as it was the first framework proposed for online learning. Here
we assume that the action set A is convex, and that at every time step t, the player
receives a set of advice (bt(i))1≤i≤d ∈ Ad. The usual interpretation is that there
is a set of experts playing the online optimization game simultaneously with the
player. We make no restriction on the experts except that their decisions at time
t are revealed to the player before he makes his own choice at. Note in particular
that one can easily assume that the experts have access to external sources of in-
formation to make their decisions. In this setting the goal is to perform as well as
the best expert. Thus we consider the following cumulative regret with respect to
the experts:

(1.1) REn =

n∑
t=1

`(at, zt)− min
1≤i≤d

n∑
t=1

`(bt(i), zt).

Here the goal is to obtain bounds independent of the expert advice and the ad-
versary’s moves. Any known strategy for this problem computes the action at by
taking a convex combination of the expert advice bt(i). In that case, one can view
the prediction with expert advice as an online optimization problem over the (d−1)-
simplex, where one restricts to the vertices of the (d−1)-simplex for the comparison
class in the definition of the cumulative regret. More precisely the reduction goes

as follows: Let ∆d = {p ∈ Rd+,
∑d
i=1 p(i) = 1} be the (d− 1)-simplex, let e1, . . . , ed

be the canonical basis of Rd (which correspond to the vertices of the simplex), and
let Z̄ = Ad ×Z be the set of expert advice and adversary’s moves. We define now
a new loss function ¯̀ on ∆d × Z̄ by

¯̀(p, (b, z)) = `

(
d∑
i=1

p(i)b(i), z

)
.

In words the loss ¯̀ of a point in the simplex is the original loss ` of the corre-
sponding convex combination of the expert advice. We can now consider the online
optimization problem where the action set is ∆d, the set of moves for the adversary
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is Z̄, the loss function is ¯̀, and the cumulative regret with respect to the experts
is defined as:

REn =

n∑
t=1

¯̀(pt, (bt, zt))− min
1≤i≤d

n∑
t=1

`(ei, (bt, zt)).

This restricted notion of cumulative regret for the online optimization problem co-
incides with the cumulative regret defined in (1.1). Importantly, note that if ` is
convex in its first argument, then so is ¯̀.

The prediction with expert advice is also a very general framework that encom-
passes many applications. In particular this setting can be used for meta-learning
under very weak assumptions: one can for instance combine the predictions of
different statistical procedures to obtain a prediction almost as good as the best
statistical procedure in our set, even if there is an adversary that is choosing the
data (this is some kind of robust model selection).

1.2.5. Example 4: Online linear optimization. Online linear optimiza-
tion refers to online optimization problems where the loss function is linear in its
first argument. We usually restrict to the finite dimensional case, where A,Z ⊂ Rd
and `(a, z) = aT z.

Many interesting and challenging applications fit in this framework. The prob-
lem of path planning is one of them:

• A represents a set of paths in a given graph with d edges (more precisely
the elements of A ⊂ {0, 1}d are the incidence vectors for the corresponding
paths).

• z ∈ Z represents a weight on the graph.
• aT z is the total weight given by z on path a, it can be interpreted as the

cost of sending a bit using path a when the delays in the graphs are given
by z.

• The cumulative regret Rn corresponds to the total extra cost of sending n
bits according to our strategy a1, . . . , an compared to the cost of the best
path in hindsight.

1.2.6. Example 5: Online matrix completion. Here at every time step
we predict a matrix at of size m× d with rank bounded by k, the adversary reveals
the entry zt = (i, j) of an unknown (but fixed) matrix M . The loss can be the
square loss `(a, (i, j)) = (ai,j −Mi,j)

2. A typical relaxation of this problem is to
consider matrices with bounded trace norm rather than bounded rank.

1.2.7. Example 6: One-pass offline optimization. Consider the general
problem of statistical learning theory described in Section 1.1.1 with a convex set A
and a convex loss function, that is ∀z ∈ Z, a 7→ `(a, z) is convex. Now consider an
online optimization procedure run sequentially on the data set Z1, . . . , Zn. Clearly,
by convexity of the loss, and by taking a(Z1, . . . , Zn) = 1

n

∑n
t=1 at, one has:

rn ≤
Rn
n
.

In other words one can solve the statistical learning problem by doing a one-pass
online optimization on the data set.
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1.3. General objective of the course

The general goal of the course is to study the achievable growth rate for the
cumulative regret in terms of the number of rounds n, the geometry of the action
set A, and under different assumptions on the loss function. The importance of an
optimal regret bound can be justified as follows. If the regret is sublinear, then it
means that asymptotically one performs almost as well as the best action in hind-
sight. In other words a regret bound gives an order of magnitude for the size of the
problem (defined in terms of the complexity measure of A and ` that appears in
the regret bound) that one can ”solve” with an online learning algorithm. This is
similar in spirit to computational complexity bounds, which give an order of magni-
tude for the input size that one can consider with a given budget of computational
resources.

This characterization of the optimal regret in a given scenario is achieved
through algorithms to obtain upper bounds on the achievable regret, and through
information-theoretic arguments to obtain lower bounds. We also pay particular
attention to the computational complexity of the proposed algorithms.

In these lecture notes we focus primarily on Online Convex Optimization, where
A is a convex set and ` is a convex function1. More precisely we consider five
different types of convex functions:

(1) bounded convex loss (with a different treatment for the prediction with
expert advice and the general online optimization problem),

(2) exp-concave loss (with a different treatment for the prediction with expert
advice and the general online optimization problem),

(3) subdifferentiable loss with bounded subgradients,
(4) strongly-convex loss with bounded subgradients,
(5) linear loss in a combinatorial setting.

Note that in the combinatorial setting A is a finite set, but we show how to reduce
it to a convex problem. In addition we also consider the situation where the player
receives only partial information on the adversary’s move. A particularly interest-
ing and challenging limited feedback case is the so-called bandit problem, where
one does not observe zt but only the suffered loss `(at, zt). In Chapter 7 we also
consider different variants of the bandit problem.

In the next section we define precisely convexity, strong-convexity and exp-
concavity. We also discuss the relation between these notions.

1.4. Different notions of convexity

Definition 1.1. Let f : X → R where X is a convex set (which is a subset of
an arbitrary vector space over the reals). Then one says that

• f is convex if ∀(x, y, γ) ∈ X 2×[0, 1], f((1−γ)x+γy) ≤ (1−γ)f(x)+γf(y).
• f is concave if −f is convex.
• f is σ-exp concave (σ > 0) if x 7→ exp(−σf(x)) is a concave function.

If X ⊂ Rd, then one says that

1Note that when we say that a loss function ` satisfies a certain property, we usually mean
that ∀z ∈ Z the function a 7→ `(a, z) satisfies this property. For instance a convex loss function is

such that is ∀z ∈ Z, a 7→ `(a, z) is a convex function.
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• f is subdifferentiable if ∀x ∈ X , there exists a subgradient g ∈ Rd such
that

f(x)− f(y) ≤ gT (x− y),∀y ∈ X .
With an abuse of notation, we note ∇f(x) for a subgradient of f at x.

• f is α-strongly-convex if it is subdifferentiable and ∀x ∈ X ,

f(x)− f(y) ≤ ∇f(x)T (x− y)− α

2
||x− y||22,∀y ∈ X .

• f is α-strongly-convex with respect to a norm || · || if it is subdifferentiable
and ∀x ∈ X ,

f(x)− f(y) ≤ ∇f(x)T (x− y)− α

2
||x− y||2,∀y ∈ X .

The following Proposition is an easy exercise.

Proposition 1.1. If a function is either α-strongly convex, or σ-exp-concave,
or subdifferentiable, then it is convex. On the other hand if f is a convex function,
X ⊂ Rd, and either f is differentiable or X is an open set, then f is subdifferentiable
(in the former case the subgradient coincides with the gradient).

The next lemma exhibits an equivalent definition for strong convexity.

Lemma 1.1. Let f be a differentiable function. Then f is α-strongly convex
with respect to a a norm || · || if and only if

(∇f(x)−∇f(y))T (x− y) ≥ α||x− y||2,∀x, y ∈ X .

Proof. One direction is trivial by simply summing the strong convexity con-
dition for the pairs (x, y) and (y, x). For the other direction, let

h : t ∈ [0, 1] 7→ f(x+ t(y − x)).

Note that

h′(t)− h′(0) = (y − x)T∇f(x+ t(y − x))−∇f(x) ≥ αt||x− y||2.
One has:

f(y)− f(x) = h(1)− h(0) =

∫ 1

0

h′(t)dt ≥ ∇f(x)T (y − x) +
α

2
||x− y||2,

which concludes the proof. �

The next proposition relates the different convexity notions to properties of
the Hessian of f and exhibits different relations between strong-convexity and exp-
concavity.

Proposition 1.2. Let X ⊂ Rd be a convex set, and f : X → R a twice
continuously differentiable function. Then the following holds true.

• f is convex if and only if ∇2f(x) � 0,∀x ∈ X .
• f is α-strongly convex if and only if ∇2f(x) � αId,∀x ∈ X .
• f is σ-exp concave if and only if ∇2 exp(−σf(x)) � 0,∀x ∈ X .

Moreover, if f is α-strongly convex, with bounded gradient ||∇f(x)||2 ≤ B, ∀x ∈ X ,
then f is α

B2 -exp concave,

Finally we end this chapter with a description of the convexity properties of
the log-loss.
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Proposition 1.3. The log-loss (a, z) ∈ Rd+×Rd+ 7→ − log(aT z) has the follow-
ing properties.

• It is 1-exp concave.
• It takes unbounded values and it has unbounded gradient, even when re-

stricted to the (d− 1)-simplex.
• It is not α-strongly convex, for any α > 0.
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CHAPTER 2

Online optimization on the simplex

In this chapter we consider the online learning problem with the (d−1)-simplex

∆d = {p ∈ Rd+,
∑d
i=1 p(i) = 1} as the action set. We recall that in online optimiza-

tion the cumulative regret is defined as (with the notation at replaced by the more
natural pt for points in the simplex):

(2.1) Rn =

n∑
t=1

`(pt, zt)− inf
q∈∆d

n∑
t=1

`(q, zt),

while for the prediction with expert advice problem the comparison is restricted to
the canonical basis e1, . . . , ed of Rd and one obtains the expert regret:

(2.2) REn =

n∑
t=1

`(pt, zt)− inf
1≤i≤d

n∑
t=1

`(ei, zt).

The two notions coincide for linear losses, but they are different for general convex
losses. We refer to upper bounds on Rn as regret bounds and on REn as expert regret
bounds.

In this chapter we first restrict our attention to prediction with expert advice,
that is to the expert regret (2.2). Keep in mind that online linear optimization on
the simplex is equivalent to prediction with expert advice with linear loss (since for
linear losses REn = Rn), thus by solving the latter we also obtain a solution for the
former.

We start in Section 2.1 by describing the most renowed strategy of online
learning, namely the exponentially weighted average forecaster. Then we proceed
to prove an expert regret bound for this strategy in the setting of bounded convex
losses in Section 2.2 (which implies in particular a regret bound for online bounded
linear optimization) and exp-concave losses in Section 2.3. We also show in Section
2.4 that the expert regret bound for bounded convex losses is unimprovable (in fact
we show that the regret bound for bounded linear losses is unimprovable). Then in
Section 2.6 we show how to extend these results to the regret (2.1) for subdifferen-
tiable losses with bounded subgradient.

Finally in Section 2.7 we show how to apply results from online optimization
on the simplex to online optimization with a finite action set.

2.1. Exponentially weighted average forecaster (Exp strategy)

The idea of this fundamental strategy goes as follows. One wants to perform as
well as the best vertex in the simplex (expert regret). A simple strategy to try to do

15
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this is to assign a weight to each vertex on the basis of its past performances, and
then take the corresponding convex combination of the vertices as its decision pt.
The weight of a vertex should be a non-increasing function of its past cumulative
loss. Here we choose the exponential function to obtain the following decision:

pt =

d∑
i=1

wt(i)∑d
j=1 wt(j)

ei,

where

wt(i) = exp

(
−η

t−1∑
s=1

`(ei, zs)

)
,

and η > 0 is a fixed parameter. In other words, ∀i ∈ {1, . . . , d},

pt(i) =
exp

(
−η
∑t−1
s=1 `(ei, zs)

)
∑d
j=1 exp

(
−η
∑t−1
s=1 `(ej , zs)

) .
Note that wt(i) = wt−1(i) exp (−η`(et−1, zt−1)). Thus the computational complex-
ity of one step of the Exp strategy is of order O(d).

2.2. Bounded convex loss and expert regret

In this section we analyze the expert regret of the Exp strategy for bounded
convex losses. Without loss of generality we assume `(p, z) ∈ [0, 1],∀(p, z) ∈ ∆d×Z.

Indeed if `(p, z) ∈ [m,M ] then one can work with a rescaled loss ¯̀(a, z) = `(a,z)−m
M−m .

We use the following fundamental result from probability theory, known as
Hoeffding’s inequality:

Lemma 2.1. Let X be a real random variable with a ≤ X ≤ b. Then for any
s ∈ R,

log (E exp(sX)) ≤ sEX +
s2(b− a)2

8
.

Now we can prove the following regret bound:

Theorem 2.1. For any convex loss taking values in [0, 1], the Exp strategy
satisfies:

REn ≤
log d

η
+
nη

8
.

In particular with η = 2
√

2 log d
n it satisfies:

REn ≤
√
n log d

2
.
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Proof. Let wt(i) = exp
(
−η
∑t−1
s=1 `(ei, zs)

)
and Wt =

∑d
i=1 wt(i) (by defini-

tion w1(i) = 1 and W1 = d). Then we have:

log
Wn+1

W1
= log

(
d∑
i=1

wn+1(i)

)
− log d

≥ log

(
max

1≤i≤d
wn+1(i)

)
− log d

= −η min
1≤i≤d

n∑
t=1

`(ei, zt)− log d.

On the other hand, we have log Wn+1

W1
=
∑n
t=1 log Wt+1

Wt
and

log
Wt+1

Wt
= log

(
d∑
i=1

wt(i)

Wt
exp(−η`(ei, zt))

)

= log (E exp(−η`(eI , zt)) where P(I = i) =
wt(i)

Wt

≤ −ηE`(eI , zt) +
η2

8
(Hoeffding’s lemma)

≤ −η`(EeI , zt) +
η2

8
(Jensen’s inequality)

= −η`(pt, zt) +
η2

8
.

Thus we proved:

n∑
t=1

(
−η`(pt, zt) +

η2

8

)
≥ −η min

1≤i≤d

n∑
t=1

`(ei, zt)− log d.

In other words:

REn ≤
log d

η
+
nη

8
,

which concludes the proof. �

2.3. Exp-concave loss and expert regret

In this section we study another type of convex loss functions, namely the
exp-concave losses. Recall that a loss function is σ-exp-concave if ∀z ∈ Z, p 7→
exp(−σ`(p, z)) is a concave function. Note in particular that this definition does
not require boundedness.

Theorem 2.2. For any σ-exp-concave loss, the Exp strategy with parameter
η = σ satisfies:

REn ≤
log d

σ
.

Proof. In the previous proof it suffices to replace Hoeffding’s lemma followed
by Jensen’s inequality by a single Jensen’s inequality applied to p 7→ exp(−η`(p, z)).

�
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2.4. Lower bound

In this section we prove that the expert regret bound for general convex and
bounded losses is unimprovable. In fact we show that the regret bound for on-
line bounded linear losses is unimprovable, and that it is even optimal up to the
constant. The proof is based on the following result from probability theory.

Lemma 2.2. Let (σi,t)1≤i≤d,1≤t≤n be i.i.d Rademacher random variables. The
following holds true:

lim
d→+∞

lim
n→+∞

E (max1≤i≤d
∑n
t=1 σi,t)√

2n log d
= 1.

Theorem 2.3. Consider the loss ` : (p, z) ∈ ∆d × {0, 1}d 7→ pT z ∈ [0, 1]. For
any strategy, the following holds true:

sup
n,d

sup
adversary

Rn√
(n/2) log d

≥ 1.

Proof. The proof relies on the probabilistic method. Instead of constructing
explicitly a difficult adversary for a given strategy, we put a (uniform) distribution
on the possible adversaries and show that the average regret (with respect to the
drawing of the adversary) is large. In other words we use the inequality:

sup
adversary

Rn ≥ Eadversary Rn.

More precisely we consider an array (εi,t)1≤i≤d,1≤t≤n of i.i.d Bernoulli random
variable with parameter 1/2. The adversary corresponding to this array sets zt =
(ε1,t, . . . , εd,t). We compute now the expected regret, where the expectation is taken
with respect to the random draw of the Bernoulli array. Here a little bit of care is
needed. Indeed the action pt taken by the player is now a random variable. More
precisely pt ∈ σ(z1, . . . , zt−1), and thus:

E pTt zt = E
(
E
(
pTt zt|z1, . . . , zt−1

))
= E

(
d∑
i=1

pt(i)E (εi,t|z1, . . . , zt−1)

)
=

1

2
.

In particular one obtains that

ERn =
n

2
− E min

1≤i≤d

n∑
t=1

εi,t =
1

2
E max

1≤i≤d

n∑
t=1

σi,t,

where σi,t = 1−2εi,t is a Rademacher random variable. Using Lemma 2.2 ends the
proof. �

2.5. Anytime strategy

One weakness of Exp is that the optimal parameter η depends on the horizon
n. In many applications this horizon is unknown, thus it is of interest to obtain a
strategy which admits a regret bound uniformly over time. We show here that this
goal is easily achieved with a time-varying parameter ηt.

Theorem 2.4. For any convex loss with values in [0, 1], the Exp strategy with

time-varying parameter ηt = 2
√

log d
t satisfies for all n ≥ 1:

REn ≤
√
n log d.
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Proof. Let wt(i) = exp
(
−ηt

∑t−1
s=1 `(ei, zs)

)
and Wt =

∑d
i=1 wt(i) (by defi-

nition w1(i) = 1 and W1 = d). Following the proof of Theoren 3.1, we focus on the
quantity:

ζt =
1

ηt
log (E exp(−ηt`(eI , zt)) where P(I = i) =

wt(i)

Wt
.

We already proved (thanks to Hoeffding’s inequality and the fact that the loss is
convex) that

ζt ≤ −`(pt, zt) +
ηt
8
.

On the other other hand, by defining Li,t =
∑t
s=1 `(ei, zt) and the function

Φt(η) =
1

η
log

(
1

d

d∑
i=1

exp(−ηLi,t)

)
,

one also obtains

ζt = Φt(ηt)− Φt−1(ηt).

A simple Abel’s transform yields

n∑
t=1

(Φt(ηt)− Φt−1(ηt)) = Φn(ηn)− Φ0(η1) +

n−1∑
t=1

(Φt(ηt)− Φt(ηt+1)) .

First note that Φ0(η1) = 0, while (following the beginning of the proof of Theorem
3.1)

Φn(ηn) ≥ − log d

ηn
− min

1≤i≤d
Li,t.

Thus, up to straightforward computations such as

n∑
t=1

1√
t
≤
∫ n

0

1√
t
dt = 2

√
n,

it suffices to show that Φt(ηt) − Φt(ηt+1) ≥ 0, which is implied by Φ′t(η) ≥ 0. We
now prove the latter inequality:

Φ′t(η) = − 1

η2
log

(
1

d

d∑
i=1

exp (−ηLi,t)

)
− 1

η

∑d
i=1 Li,t exp (−ηLi,t)∑d
i=1 exp (−ηLi,t)

=
1

η2

1∑d
i=1 exp (−ηLi,t)

d∑
i=1

exp (−ηLi,t)×

−ηLi,t − log

1

d

d∑
j=1

exp (−ηLj,t)


=

1

η2

d∑
i=1

pηt+1(i) log

(
pηt+1(i)

1/d

)
where pηt+1(i) =

exp(−ηLi,t)∑d
j=1 exp(−ηLj,t)

.

=
1

η2
KL(pηt+1, π) where π is the uniform distribution over {1, . . . , d}.

≥ 0.

�
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2.6. Subdifferentiable loss with bounded subgradient

We show now how to extend the results for the expert regret REn to the regret
Rn. We consider here a loss which is subdifferentiable on the simplex. Recall
that f : X ⊂ Rd → R is subdifferentiable if ∀x ∈ X , there exists a subgradient
∇f(x) ∈ Rd such that

f(x)− f(x0) ≤ ∇f(x)T (x− x0).

In particular a differentiable convex function is subdifferentiable (and ∇f(x) cor-
responds to the usual gradient), and a convex function on an open set is also
subdifferentiable.

Given a strategy which satisfies a regret bound for linear losses, it is easy to
modify it to obtain a regret bound for subdifferentiable losses. Indeed, it suffices
to run the strategy on the loss ¯̀(p, (q, z)) = ∇`(q, z)T q rather than on `(p, z) (note
that we artificially enlarged the adversary’s move set to Z̄ = ∆d×Z and we consider
that he plays (pt, zt) at time t), since we have the inequality:

n∑
t=1

(`(pt, zt)− `(q, zt)) ≤
n∑
t=1

∇`(pt, zt)T (pt − q)

=

n∑
t=1

(
¯̀(pt, (pt, zt))− ¯̀(q, (pt, zt))

)
.(2.3)

In particular we call subgradient-based Exp the following strategy:

pt =

d∑
i=1

exp
(
−η
∑t−1
s=1∇`(ps, zs)T ei

)
∑d
j=1 exp

(
−η
∑t−1
s=1∇`(ps, zs)T ej

) ei.
The following theorem almost directly follows from (2.3) and Theorem 3.1.

Theorem 2.5. For any subdifferentiable loss with bounded subgradient ||∇`(p, z)||∞ ≤
1,∀(p, z) ∈ ∆d×Z, the subgradient-based Exp strategy with parameter η =

√
2 log d
n

satisfies:

Rn ≤
√

2n log d.

Proof. First note that by Hölder’s inequality |∇`(q, z)T p| ≤ ||∇`(q, z)||∞||p||1 ≤
1 for (p, q, z) ∈ ∆d ×∆d × Z. Thus the modified loss ¯̀ takes value in [−1, 1]. But
it easy to see that the regret bound of Theorem 3.1 becomes

log d

η
+
nη

2
,

for losses with values in [−1, 1], which ends the proof thanks to (2.3). �

2.7. Online finite optimization

We consider here the online optimization problem over a finite action set
A = {1, . . . , d}. In this case the convexity assumptions of the previous sections
do not make sense. Moreover it is clear that if the loss can take arbitrary large
values, then no interesting regret bound can be derived. Thus in this section we
focus on bounded losses, ` : A×Z → [0, 1], with no further restriction.
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First we observe that this problem is intractable (in the sense that no sublinear
regret bound can be obtained) for the type of strategies considered so far (that were
all deterministic). More precisely consider the case where A = Z = {0, 1} with the
zero-one loss `(a, z) = 1a6=z. Then if at is a deterministic function of (z1, . . . , zt−1),
the adversary can set zt = 1− at and thus `(at, zt) = 1. On the other hand clearly
we have mina∈{0,1}

∑n
t=1 `(a, zt) ≤

n
2 . In other words for any deterministic strat-

egy, there exists a sequence z1, . . . , zn such that Rn ≥ n
2 .

The key to get around this impossibility is to add randomization in our decision
to surprise the adversary. More precisely at every time step the player chooses a
distribution pt ∈ ∆d, based on the past (in particular the adversary could have
access to pt), and then draws his decision at at random from pt. Note that the
regret Rn is still well defined, but it is now a random variable. Thus one can prove
an upper bounds on Rn which holds either with high probability or in expectation.

2.7.1. Linearization of the game. As we just saw, in online finite opti-
mization the player chooses a point pt ∈ ∆d. In other words, one could hope that
online finite optimization boils down to online optimization over the simplex. This
is indeed the case, and a general bounded loss in the finite case is equivalent to a
bounded linear loss on the simplex. More precisey we consider the loss

¯̀(p, z) =

d∑
a=1

p(a)`(a, z).

Note that this loss is linear and takes values in [0, 1]. We show now that a regret
bound with respect to this modified loss entails a regret bound for the original
game. The proof is a direct application of the following result from probability
theory, known as Hoeffding-Azuma’s inequality for martingales.

Theorem 2.6. Let F1 ⊂ · · · ⊂ Fn be a filtration, and X1, . . . , Xn real random
variables such that Xt is Ft-measurable, E(Xt|Ft−1) = 0 and Xt ∈ [At, At + ct]
where At is a random variable Ft−1-measurable and ct is a positive constant. Then,
for any ε > 0, we have

(2.4) P
( n∑
t=1

Xt ≥ ε
)
≤ exp

(
− 2ε2∑n

t=1 c
2
t

)
,

or equivalently for any δ > 0, with probability at least 1− δ, we have

(2.5)

n∑
t=1

Xt ≤

√√√√ log(δ−1)

2

n∑
t=1

c2t .

Lemma 2.3. With probability at least 1− δ the following holds true:

n∑
t=1

`(at, zt)−min
a∈A

n∑
t=1

`(a, zt) ≤
n∑
t=1

¯̀(pt, zt)− min
q∈∆d

n∑
t=1

¯̀(q, zt) +

√
n log δ−1

2
.

Proof. Apply Theorem 2.6 to the filtration Ft = σ(a1, . . . , at) and to the

random variables Xt = `(at, zt)−
∑d
a=1 pt(a)`(a, zt). �
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2.7.2. Finite Exp. Given the preceding section, the natural strategy for on-
line finite optimization is to apply the Exp strategy of Section 2.1 to the modified
loss ¯̀(p, z). But recall that this strategy uses only the loss of the vertices in the
simplex, which in this case corresponds exactly to the values `(a, z), a ∈ {1, . . . , d}.
Thus we obtain the following strategy, ∀a ∈ {1, . . . , d},

pt(a) =
exp

(
−η
∑t−1
s=1 `(a, zs)

)
∑d
i=1 exp

(
−η
∑t−1
s=1 `(i, zs)

) .
The following theorem directly follows from Theorem 3.1 and Lemma 2.3.

Theorem 2.7. For any loss with values in [0, 1], the finite Exp strategy with

parameter η = 2
√

2 log d
n satisfies with probability at least 1− δ:

Rn ≤
√
n log d

2
+

√
n log δ−1

2
.

Note that Theorem 2.3 also implies that this bound is unimprovable.
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CHAPTER 3

Continuous exponential weights

The Exp strategy proposed in the previous chapter relies heavily on the fact
that in the simplex, it is sufficient to compete with the vertices, which are in finite
number. This is clearly true for linear losses, and we were able to easily extend this
reasoning to subdifferentiable losses with bounded subgradient. In this chapter we
consider a more general scenario, where it is not enough to look at a finite number
of points. This happens in two cases. Either the action set is not a polytope (e.g.,
the Euclidean ball), in which case even for linear losses one has to compare to an
infinite number of points. Or the loss is convex but does not admit a bounded sub-
gradient (e.g., the log-loss) in which case one cannot reduce the problem to linear
losses.

We shall attack both issues simultaneously by considering the Continuous Exp
strategy defined as follows. The idea is very simple, following Section 2.1, one de-
fines a weight wt(a) for each point a ∈ A, and compute the corresponding weighted
average at. More precisely we assume that A is a convex subset of Rd and:

at =

∫
a∈A

wt(a)

Wt
a da,

where

wt(a) = exp

(
−η

t−1∑
s=1

`(a, zs)

)
, Wt =

∫
a∈A

wt(a) da,

and η > 0 is a fixed parameter. Clearly computing at is much more difficult than
computing the point given by the standard Exp strategy. However, quite mirac-
ulously, there exists efficient methods to compute the Continuous Exp strategy in

most cases. Indeed, since the loss is convex, we have that a 7→ wt(a)
Wt

is a log-concave

function. Then using random walks methods from [40], one can compute at up to a
precision ε in O (poly(d) polylog(1/ε)) steps (see [40] for the details). Clearly with
precision ε = poly(1/n) the regret bounds for Continuous Exp and its approximate
version will be similar, up to a constant. However note that the method described
in [40] works only if A is a convex body (i.e., A is of full rank). When this assump-
tion is not satisfied some care is needed, see [32] for the important example of the
simplex.

In the following we prove a regret bound for Continuous Exp when the loss is
convex and bounded, and then we propose an improved bound for the important
case of exp-concave losses (which includes the log-loss).

23
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3.1. Bounded convex loss

Similarly to Section 2.2, without loss of generality we assume here that `(a, z) ∈
[0, 1],∀(a, z) ∈ A× Z.

Theorem 3.1. For any convex loss taking values in [0, 1], the Continuous Exp
strategy satisfies ∀γ > 0:

Rn ≤
d log 1

γ

η
+
nη

8
+ γn.

In particular with γ = 1/n, and η = 2
√

2d logn
n , it satisfies:

Rn ≤ 1 +

√
dn log n

2
.

Proof. Let γ > 0, a∗ ∈ argmina∈A
∑n
t=1 `(a, zt),Nγ = {(1−γ)a∗+γa, a ∈ A}.

Then

log
Wn+1

W1
= log

(∫
a∈A wn+1(a) da∫

a∈A 1 da

)

≥ log

(∫
a∈Nγ wn+1(a) da∫

a∈A 1 da

)

= log

(∫
a∈Nγ exp (−η

∑n
t=1 `(a, zt)) da∫

a∈A 1 da

)

= log

(∫
a∈γA exp (−η

∑n
t=1 `((1− γ)a∗ + a, zt)) da∫
a∈A 1 da

)

= log

(∫
a∈A exp (−η

∑n
t=1 `((1− γ)a∗ + γa, zt)) γdda∫

a∈A 1 da

)

≥ log

(∫
a∈Nγ exp (−η

∑n
t=1 ((1− γ)`(a∗, zt) + γ`(a, zt))) γdda∫

a∈A 1 da

)

≥ log

(∫
a∈Nγ exp (−η

∑n
t=1 (`(a∗, zt) + γ)) γdda∫
a∈A 1 da

)

= d log γ − η
n∑
t=1

`(a∗, zt)− ηγn.
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On the other hand, we have log Wn+1

W1
=
∑n
t=1 log Wt+1

Wt
and

log
Wt+1

Wt
= log

(∫
A

wt(a)

Wt
exp(−η`(a, zt))da

)
= log (E exp(−η`(A, zt)) where P(A = a) =

wt(a)

Wt

≤ −ηE`(A, zt) +
η2

8
(Hoeffding’s lemma)

≤ −η`(EA, zt) +
η2

8
(Jensen’s inequality)

= −η`(at, zt) +
η2

8
.

Thus we proved:
n∑
t=1

(
−η`(at, zt) +

η2

8

)
≥ −η

n∑
t=1

`(a∗, zt)− d log γ − ηγn.

In other words:

Rn ≤
d log 1

γ

η
+
nη

8
+ γn,

which concludes the proof. �

3.2. Exp-concave loss

We study here the behavior of Continuous Exp with exp-concave losses.

Theorem 3.2. For any σ-exp-concave loss, the Continuous Exp strategy with
parameter η = σ satisfies:

Rn ≤ 1 +
d log n

σ
.

Proof. In the previous proof it suffices to use γ = 1/n and to replace Hoeffd-
ing’s lemma followed by Jensen’s inequality by a single Jensen’s inequality applied
to a 7→ exp(−η`(a, z)). �
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CHAPTER 4

Online gradient methods

The Continuous Exp strategy described in the previous chapter gives an al-
gorithm to deal with the general online convex optimization problem. However,
from an algorithmic point of view the strategy is fairly involved (even if polynomial
time implementations are possible). Moreover, while the dependency on n in the
regret bound is optimal (given the lower bound of Section 2.4), it is not clear if

the
√
d factor is necessary. In this chapter we propose to take a radically different

approach, which shall prove to be much simpler on the algorithmic side and also
give better regret bounds (under stronger conditions however).

Consider for instance the case of online convex optimization (with a subdiffer-
entiable loss) on the Euclidean ball:

B2,d = {x ∈ Rd : ||x||2 ≤ 1}.

Since, after all, we are trying to optimize a convex function on a continuous set,
why not try a simple gradient descent. In other words, set

wt+1 = at − η∇`(at, zt),

where η is the stepsize parameter of the gradient descent. The resulting point wt+1

might end up outside of the ball B2,d, in which case one would need to normalize
and set at+1 = wt+1

||wt+1||2 . Otherwise one can simply take at+1 = wt+1.

4.1. Online Gradient Descent (OGD)

The approach described above is very general and can be applied to any closed
convex set A and subdifferentiable loss `. The resulting strategy is called Online
Gradient Descent and can be described as follows: start at a point a1 ∈ A, then
for t ≥ 1,

wt+1 = at − η∇`(at, zt),(4.1)

at+1 = argmin
a∈A

||wt+1 − a||2.(4.2)

Note that in (4.1) it is enough to supply OGD with a subgradient.

Theorem 4.1. For any closed convex action set A such that ||a||2 ≤ R,∀a ∈ A,
for any subdifferentiable loss with bounded subgradient ||∇`(a, z)||2 ≤ G,∀(a, z) ∈
A× Z, the OGD strategy with parameters η = R

G
√
n

and a1 = 0 satisfies:

Rn ≤ RG
√
n.

27



28 4. ONLINE GRADIENT METHODS

Proof. Let gt = ∇`(at, zt) and a ∈ A. By definition of a subdifferentiable
loss, we have:

n∑
t=1

(
`(at, zt)− `(a, zt)

)
≤

n∑
t=1

gTt (at − a).

Moreover since wt+1 = at − ηgt, we have:

2ηgTt (at − a) = 2(at − wt+1)T (at − a)

= ||a− at||22 + ||at − wt+1||22 − ||a− wt+1||22
= η2||gt||22 + ||a− at||22 − ||a− wt+1||22.

Now note that, by definition of at+1 and since A is a convex set, one has:

||a− wt+1||22 ≥ ||a− at+1||22.
Thus by summing one directly obtains:

2η

n∑
t=1

gTt (at − a) ≤ ||a− a1||22 + η2
n∑
t=1

||gt||22

≤ R2 + η2G2n,

which ends the proof up to straightforward computations. �

4.2. Strongly convex loss with bounded subgradient

In this section we show how to improve the regret bound for strongly-convex
losses. The key is to use a time-varying parameter ηt, like we did in [Section 2.5,
Chapter 2].

Theorem 4.2. For any closed convex action set A ⊂ B2,d, for any α-strongly
loss with bounded subgradient ||∇`(a, z)||2 ≤ 1,∀(a, z) ∈ A × Z, the OGD strategy
with time-varying stepsize ηt = 1

αt and a1 = 0 satisfies:

Rn ≤
log(en)

2α
.

Proof. Let gt = ∇`(at, zt) and a ∈ A. By definition of a α-strongly convex
loss, we have:

n∑
t=1

(
`(at, zt)− `(a, zt)

)
≤

n∑
t=1

(
gTt (at − a)− α

2
||at − a||22

)
.

Now following the exact same argument than in the proof of Theorem 4.1, one can
prove:

gTt (at − a) ≤ ηt
2

+
||a− at||22 − ||a− at+1||22

2ηt
.

By summing these inequalities, and denoting ζt = ||a − at||22, one directly obtains
(with a simple Abel’s transform):
n∑
t=1

(
`(at, zt)− `(a, zt)

)
≤ 1

2

n∑
t=1

ηt +
1

2

n∑
t=1

(
ζt − ζt+1

ηt
− αζt

)

≤ log(en)

2α
+

1

2

(
1

η1
− α

)
ζ1 +

1

2

n∑
t=2

(
1

ηt
− 1

ηt−1
− α

)
ζt

=
log(en)

2α
,
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which ends the proof. �
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CHAPTER 5

Online mirror descent

In this chapter we greatly generalize the online gradient method of the previous
chapter. This generalization adds a lot of flexibility to the method, which in turns
allows it to adapt to the geometry of the problem. To describe the idea, we first
need a few notions from convex analysis.

5.1. Convex analysis

In this section we consider an open convex set D ⊂ Rd. We denote by D the
closure of D. Let || · || be a norm on Rd, and || · ||∗ the dual norm. Recall that

||u||∗ = sup
x∈Rd:||x||≤1

xTu.

In particular, by definition, the Hölder’s inequality holds: |xTu| ≤ ||x||.||u||∗.

Definition 5.1. Let f : D → R be a convex function. The Legendre-Fenchel
transform of f is defined by:

f∗(u) = sup
x∈D

(
xTu− f(x)

)
.

The next proposition shows that the dual of a norm is related to the Legendre-
Fenchel transform of that norm.

Proposition 5.1. Let f(x) = 1
2 ||x||

2. Then f∗(u) = 1
2 ||u||

2
∗.

Proof. By Hölder’s inequality, and a simple optimization of a quadratic poly-
nomial, one has:

f∗(u) = sup
x∈D

(
xTu− 1

2
||x||2

)
≤ sup
x∈D

(
||x||.||u||∗ −

1

2
||x||2

)
=

1

2
||u||2∗.

Moreover the inequality above is in fact an equality, by definition of the dual norm.
�

Definition 5.2. We call Legendre any continuous function F : D → R such
that

(i) F is strictly convex and admits continuous first partial derivatives on D,
(ii) limx→D\D ||∇F (x)|| = +∞.1

The Bregman divergence DF : D×D associated to a Legendre function F is defined
by

DF (x, y) = F (x)− F (y)− (x− y)T∇F (y).

Moreover we say that D∗ = ∇F (D) is the dual space of D under F .

1By the equivalence of norms in Rd, this definition does not depend on the choice of the
norm.
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Note that, by definition, DF (x, y) > 0 if x 6= y, and DF (x, x) = 0.

Lemma 5.1. Let F be a Legendre function. Then F ∗∗ = F , and ∇F ∗ = (∇F )−1

(on the set D∗). Moreover, ∀x, y ∈ D,

(5.1) DF (x, y) = DF∗(∇F (y),∇F (x)).

The above lemma is the key to understand how a Legendre function act on
the space. The mapping ∇F maps D to the dual space D∗, and ∇F ∗ is the in-
verse mapping to go from the dual space to the original (primal) space. Moreover
(5.1) shows that the Bregman divergence in the primal corresponds exactly to the
Bregman divergence of the Legendre-transform in the dual. We examine now these
phenomenons on a few examples.

Example 5.1. Let F (x) = 1
2 ||x||

2
2 with D = Rd. F is Legendre, and it is easy

to see that DF (x, y) = 1
2 ||x − y||

2
2. Moreover Proposition 5.1 shows that F ∗ = F .

Thus here the primal and dual spaces are the same.

Example 5.2. Let F (x) =
∑d
i=1 xi log xi −

∑d
i=1 xi (generalized negative en-

tropy) with D = (0,+∞)d. F is Legendre, and it is easy to show that:

∇F (x) = (log x1, . . . , log xd),

DF (x, y) =

d∑
i=1

xi log
xi
yi
−

d∑
i=1

(xi − yi) (generalized Kullback-Leibler divergence),

F ∗(u) =

d∑
i=1

exp(ui),

∇F ∗(u) = (exp(u1), . . . , exp(ud)),

DF∗(u, v) =

d∑
i=1

exp(vi) (exp(ui − vi)− 1− (ui − vi)) .

Here the primal space is (0,+∞)d, and the dual is Rd.

Example 5.3. Let F (x) = −2
∑d
i=1

√
xi with D = (0,+∞)d. F is Legendre,

and it is easy to show that:

∇F (x) = −
(

1
√
x1
, . . . ,

1
√
xd

)
,

DF (x, y) =

d∑
i=1

(
√
xi −

√
yi)

2

√
yi

,

F ∗(u) =

{
+∞ if u ∈ Rd \ (−∞, 0)d

−
∑d
i=1

1
ui

if u ∈ (−∞, 0)d

∇F ∗(u) =

(
1

u2
1

, . . . ,
1

u2
d

)
if u ∈ (−∞, 0)d,

DF∗(u, v) =

d∑
i=1

vi

(
1

ui
− 1

vi

)2

if u, v ∈ (−∞, 0)d.

Here the primal space is (0,+∞)d, and the dual is (−∞, 0)d.
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We now state a few property that will be useful when working with Bregman
divergences. The first lemma is a trivial equality, but it is nonetheless useful to
state it as we will use this result several times

Lemma 5.2. Let F be a Legendre function. Then ∀(x, y, z) ∈ D ×D ×D,

DF (x, y) +DF (y, z) = DF (x, z) + (x− y)T (∇F (z)−∇F (y)).

The next lemma shows that the geometry induced by a Bregman divergence
ressembles to the geometry of the squared euclidean distance.

Lemma 5.3. Let A ⊂ D be a closed convex set such that A ∩ D 6= ∅. Then,
∀x ∈ D,

b = argmin
a∈A

DF (a, x),

exists and is unique. Moreover b ∈ A ∩ D, and ∀ a ∈ A,

DF (a, x) ≥ DF (a, b) +DF (b, x).

5.2. Online Mirror Descent (OMD)

The idea of OMD is very simple: first select a Legendre function F on D ⊃ A
(such that A∩D 6= ∅). Then perform an online gradient descent, where the update
with the gradient is performed in the dual space D∗ rather than in the primal D,
and where the projection step is defined by the Bregman divergence associated to
F . More precisely the algorithm works as follows for a closed convex set A and a
subdifferentiable loss `: start at a1 ∈ argmina∈A F (a) (note that a1 ∈ A∩D), then
for t ≥ 1,

wt+1 = ∇F ∗
(
∇F (at)− η∇`(at, zt)

)
,(5.2)

at+1 = argmin
a∈A

DF (a,wt+1).(5.3)

Note that (5.2) is well defined if the following consistency condition is satisfied:

(5.4) ∇F (a)− η∇`(a, z) ∈ D∗,∀(a, z) ∈ A ∩ D ×Z.
Note also that (5.2) can be rewritten as:

(5.5) ∇F (wt+1) = ∇F (at)− η∇`(at, zt).
The projection step (5.3) is a convex program in the sense that x 7→ DF (x, y)

is always a convex function. This does not necessarily implies that (5.3) can be
performed efficiently, since in some cases the feasible set A might only be described
with an exponential number of constraints (we shall encounter examples like this
in the next chapter).

In some cases it is possible to derive a closed form expression for the Bregman
projection (5.3) using the following lemma.

Lemma 5.4. Let f be a convex and differentiable function on X . Then f(x) ≤
f(y),∀y ∈ X if and only if ∇f(x)T (y − x) ≥ 0,∀y ∈ X .

Proof. One direction is straightforward using the fact that a convex and dif-
ferentiable function is subdifferentiable. For the other direction it suffices to note
that if ∇f(x)T (y − x) < 0, then f is locally decreasing around x on the line to y
(simply consider h(t) = f(x+ t(y − x)) and note that h′(0) < 0). �
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We detail now a few instances of OMD.

Example 5.4. OMD with F (x) = 1
2 ||x||

2
2 (defined on D = Rd) corresponds

exactly to OGD. Note that here OMD is always well defined (in other words (5.4)
is always satisfied) since D∗ = Rd.

Example 5.5. Consider A = ∆d, and F (x) =
∑d
i=1 xi log xi−

∑d
i=1 xi (defined

on D = (0,+∞)d). Note that here OMD is always well defined (in other words (5.4)
is always satisfied) since D∗ = Rd. Using the computations that we did previously
for this Legendre function, one can see that (5.2) rewrites:

wt+1(i) = at(i) exp(−η∇`(at, zt)T ei).
Moreover the projection step in (5.3) is equivalent to a normalization. Indeed using
Lemma 5.4, one can see that

x = argmin
a∈∆d

d∑
i=1

ai log
ai
wi
−

d∑
i=1

(ai − wi),

if and only x ∈ ∆d and

d∑
i=1

(yi − xi) log
xi
wi
≥ 0,∀y ∈ ∆d.

This latter condition is clearly satisfied for x = w
||w||1 .

Thus we proved that OMD on the simplex with the unnormalized negative en-
tropy is equivalent to subgradient-based Exp.

We prove now a very general and powerful theorem to analyze OMD.

Theorem 5.1. Let A be a closed convex action set, ` a subdifferentiable loss,
and F a Legendre function defined on D ⊃ A, such that (5.4) is satisfied. Then
OMD satisfies:

Rn ≤
supa∈A F (a)− F (a1)

η
+

1

η

n∑
t=1

DF∗

(
∇F (at)− η∇`(at, zt),∇F (at)

)
.

Proof. Let a ∈ A. Since ` is subdifferentiable we have:
n∑
t=1

(`(at, zt)− `(a, zt)) ≤
n∑
t=1

∇`(at, zt)T (at − a).

Using (5.5), and applying Lemma 5.2, one obtains

η∇`(at, zt)T (at − a) = (a− at)T
(
∇F (wt+1)−∇F (at)

)
= DF (a, at) +DF (at, wt+1)−DF (a,wt+1).

By Lemma 5.3, one gets DF (a,wt+1) ≥ DF (a, at+1) +DF (at+1, wt+1), hence

η∇`(at, zt)T (at − a) ≤ DF (a, at) +DF (at, wt+1)−DF (a, at+1)−DF (at+1, wt+1).

Summing over t then gives
n∑
t=1

η∇`(at, zt)T (at − a) ≤ DF (a, a1)−DF (a, an+1)

+

n∑
t=1

(
DF (at, wt+1)−DF (at+1, wt+1)

)
.
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By the nonnegativity of the Bregman divergences, we get
n∑
t=1

η∇`(at, zt)T (at − a) ≤ DF (a, a1) +

n∑
t=1

DF (at, wt+1).

From (5.1), one has

DF (at, wt+1) = DF∗
(
∇F (at)− η∇`(at, zt),∇F (at)

)
.

Moreover since a1 argmina∈A F (a), Lemma 5.4 directly gives

DF (a, a1) ≤ F (a)− F (a1),∀a ∈ A,
which concludes the proof. �

First note that for OGD, this theorem gives back the result of Theorem 4.1.
On the other hand for subgradient-based Exp we recover Theorem 2.5, with a
slightly worse constant: First note that the negative entropy is always negative,
and minimized at the uniform distribution (i.e. a1 = (1/d, . . . , 1/d)). Thus we get

F (a)− F (a1)

η
≤ log d

η
.

Moreover note that, using previous computations, one obtains:

DF∗

(
∇F (at)− η∇`(at, zt),∇F (at)

)
=

d∑
i=1

at(i)Θ(−η∇`(at, zt)T ei),

where Θ : x ∈ R 7→ exp(x)− 1− x. One concludes using the following lemma:

Lemma 5.5. If x ∈ R−, then Θ(x) ≤ x2

2 . Moreover if x ≤ 1, then Θ(x) ≤ x2.

5.3. Subgradient bounded in an arbitrary norm

We already saw that Exp on the simplex has a bound naturally expressed in
terms of ||∇`(a, z)||∞, while OGD requires a bound on ||∇`(a, z)||2. Here we turn
the table, and we ask for an algorithm for which the bound would express naturally
in terms of some norm || · ||. The next theorem shows that this goal is achieved by
computing a Legendre function F strongly convex (on A) with respect to the dual
norm.

Theorem 5.2. For any closed convex action set A, for any subdifferentiable
loss with bounded subgradient ||∇`(a, z)||∗ ≤ G,∀(a, z) ∈ A×Z, the OMD strategy
with a Legendre function F on D such that F (a) − F (a1) ≤ R2,∀a ∈ A, and its

restriction to A is α-strongly convex with respect to || · ||, and with η = G
R

√
2
n

satisfies:

Rn ≤ RG
√

2n

α
.

Proof. Here we need to go back to the proof of Theorem 5.1, from which we
extract that:

n∑
t=1

η∇`(at, zt)T (at − a) ≤ DF (a, a1)−DF (a, an+1)

+

n∑
t=1

(
DF (at, wt+1)−DF (at+1, wt+1)

)
.
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Now remark that, thanks to the strong convexity of F (on A), the definition of
OMD and Hölder’s inequality:

n∑
t=1

(
DF (at, wt+1)−DF (at+1, wt+1)

)
= F (at)− F (at+1) +∇F (wt+1)T (at+1 − at)

≤ ∇F (at)
T (at − at+1)− α

2
||at − at+1||2∗ +∇F (wt+1)T (at+1 − at)

= −η∇`(at, zt)T (at − at+1)− α

2
||at − at+1||2

≤ ηG||at − at+1|| −
α

2
||at − at+1||2

≤ (ηG)2

2α
,

which concludes the proof. �

We show now a few examples where it is possible to design such a Legendre
function.

Lemma 5.6. Let Q be a symmetric d×d matrix such that Q � 0. Consider the

norm defined by ||x|| =
√
xTQx. Then F (x) = 1

2x
TQx is 1-strongly-convex with

respect to || · ||.

Proof. The result follows from a simple application of Proposition 1.1, since
here

(∇F (x)−∇F (y))T (x− y) =
1

2
(x− y)TQ(x− y).

�

Lemma 5.7. Let q ∈ [1, 2]. Then F (x) = 1
2 ||x||

2
q is (q− 1)-strongly convex with

respect to || · ||q on Rd.

Lemma 5.8. Let q ∈ [1, 2]. Then F (x) = 1
2 ||x||

2
q is q−1

d
2
q−1
q

-strongly convex with

respect to || · ||1 on Rd. In particular with q = 2 log d
2 log(d)−1 it is 1

2e log d -strongly convex

with respect to || · ||1 on Rd.

Proof. First note that for any p,

||x||p ≤ (d||x||p∞)
1/p

= d1/p||x||∞.
Thus by duality this implies that for q such that 1

p + 1
q = 1, one has:

||x||q ≥
1

d1/p
||x||1 =

1

d
q−1
q

||x||1,

which clearly concludes the proof thanks to Lemma 5.7. �

In some cases it is important to use the fact that one only need the restriction
of F to the action set to be strongly convex. An important example is the case of
the negative entropy on the simplex (or rescaled versions of the simplex).

Lemma 5.9. F (x) =
∑d
i=1 xi log xi − xi (Legendre on D = (0,+∞)d) is 1-

strongly convex with respect to || · ||1 on ∆d. Moreover it is also 1
α -strongly convex

on α∆d.
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To prove this lemma we use Pinsker’s inequality that we state without a proof.

Lemma 5.10. For any x, y ∈ ∆d,

1

2
||x− y||21 ≤ KL(x, y) =

d∑
i=1

xi log
xi
yi
.

We can now prove easily the previous lemma.

Proof. The result follows on ∆d a simple application of Proposition 1.1 and
Lemma 5.10, since here

(∇F (x)−∇F (y))T (x− y) =

d∑
i=1

(xi − yi) log
xi
yi

= KL(x, y) + KL(y, x).

The generalization to points such that ||x||1 = α is also easy, as in that case:

d∑
i=1

(xi − yi) log
xi
yi

= α (KL(x/α, y/α) + KL(y/α, x/α)) .

�
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CHAPTER 6

Online combinatorial optimization

In this chapter we consider online linear optimization over a subset of {0, 1}d.
As we shall see in the first section, many interesting and challenging problems fall
into that framework.

More precisely, one is given a set of concept C = {v1, . . . , vN} ⊂ {0, 1}d, and
we consider online optimization with A = C, Z = [0, 1]d, and `(a, z) = aT z.1 Just
as in [Chapter 2, Section 2.7], by adding randomization this problem is equivalent
to online optimization over the convex hull of C (since the loss is linear):

A = Conv(C) =

{
N∑
i=1

p(i)vi : p ∈ ∆N

}
.

However note that here it is not obvious at all how to perform the randomization
step in a computationally efficient way (in this chapter we consider as efficient
a computational complexity polynomial in the dimension d). More precisely two
issues arise:

• The decomposition problem: given x ∈ Conv(C), find (efficiently) p ∈ ∆N

such that
∑N
i=1 p(i)vi = x. Note that even writing down p might be

impossible since N can be exponential in d. Carathéodory’s Theorem
below shows that in principle it it possible to avoid this issue and always
get a p with at most d+ 1 non-zero coordinates.

• The sampling problem: given p ∈ ∆N , draw a point V ∈ C at random
according to p. Again we may not able to write down p, so we have to
assume some kind of oracle access to p (given v one can efficiently compute
p(v)), or that p can factorize in some sense (we will see some examples
below).

One way to solve both issues at the same time is to resort to the proof of Carathéodory’s
Theorem, which gives an efficient algorithm as soon as A can be described by a
polynomial number of constraints (which shall be the case in several interesting and
non-trivial examples). Let us recall that result.

Theorem 6.1. For any x ∈ Conv(C), there exists p ∈ ∆N such that ||p||0 ≤
d+ 1 and

∑N
i=1 p(i)vi = x.

Proof. Assume that N > d + 1 (otherwise the proof is trivial). Let x =∑k
i=1 p(i)vi, with k > d + 1 and p(i) > 0,∀i ∈ {1, . . . , k}. We will show that we

can define q ∈ ∆N such that x =
∑k
i=1 q(i)vi and ||q||0 ≤ k − 1. This will clearly

prove the theorem.

1Note that if all concepts have the same size, i.e. ||v||1 = m, ∀v ∈ C, then one can reduce the
case of Z = [α, β]d to Z = [0, 1]d via a simple renormalization.

39
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First note that since we are in dimension d and k > d+ 1, there exists α ∈ Rk
such that

k∑
i=1

α(i)vi = 0 and

k∑
i=1

α(i) = 0.

Now let

q(i) = p(i)−
(

min
j:α(j)>0

p(j)

α(j)

)
αi.

By construction q satisfies the conditions described above. �

Note that in this chapter we set a very challenging problem. Indeed, even the
offline optimization problem, i.e.

given z ∈ [0, 1]d, find argmin
v∈C

vT z,

might require sophisticated algorithms (or can even be intractable). Note in par-
ticular that if the convex hull of C can be described with a polynomial number of
constraints, then the offline optimization probem can be solved efficiently by the
ellipsoid method (though there might exist faster methods in some cases). As we
will see, in that case one can also solve efficiently the online problem. However
in some cases there exists efficient algorithms for the offline problem, even if the
convex hull can only be described by an exponential number of constraints. We
consider an algorithm taking advantage of that situation in the last section of this
chapter.

6.1. Examples

We discuss here a few important examples of online combinatorial optimization.

6.1.1. Simplex. The simplest example is when C = {e1, . . . , ed}. This cor-
responds to the finite optimization problem described in [Chapter 2, Section 2.7].
Here Conv(C) = ∆d.

6.1.2. m-sets. Another important problem is finite optimization where at
each round the player has to choose m alternatives out of the d possible choices.
This corresponds to the set C ⊂ {0, 1}d of all vectors with exactly m ones. Note

that here N =
(
d
m

)
. However the following lemma shows that the convex hull of

m-sets is easily described.

Lemma 6.1. Let C be the set of m-sets, then

Conv(C) =

{
x ∈ [0, 1]d :

d∑
i=1

x(i) = m

}
.

Proof. Remark that, for two convex sets C1 ⊂ C2 ⊂ Rd, if for any z ∈ Rd,
maxx∈C1 z

Tx = maxx∈C2 z
Tx then C1 = C2 (otherwise just consider z to be the

normal of a hyperplane separating a point x ∈ C2 \ C1 from C1). Here we clearly
have

Conv(C) ⊂

{
x ∈ [0, 1]d :

d∑
i=1

x(i) = m

}
,

and on both sets the maximum of a linear function is realized by putting all the
mass on the m largest components of z. �
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6.1.3. Bipartite matching. Consider the complete bipartite graph Km,M

with m ≤ M (that is the set of vertices is composed of one set of size m and
another set of size M , and the set of edges consist of all possible links from one set
to another). Let C contain all matchings of size m (that is an injective mapping from
{1, . . . ,m} to {1, . . . ,M}). Here N = M !

(M−m)! , d = m×M , and it is convenient to

represent points in C as matrices in Rm×M rather than vectors. Birkhoff’s Theorem
shows that the convex hull of matchings on bipartite graph is easily described.

Theorem 6.2. Let C be the set of matchings of size m on Km,M , then

Conv(C) =

x ∈ [0, 1]m×M :

M∑
j=1

x(i, j) = 1, ∀i ∈ {1, . . . ,m},

and

m∑
i=1

x(i, j) ∈ [0, 1], ∀j ∈ {1, . . . ,M}

}
.

Proof. Let

Dm,M =

x ∈ [0, 1]m×M :

M∑
j=1

x(i, j) = 1, ∀i ∈ {1, . . . ,m},

and

m∑
i=1

x(i, j) ∈ [0, 1], ∀j ∈ {1, . . . ,M}

}
.

We will first prove that for m = M we have Conv(C) = Dm,m.

Note that clearly the constraint
∑m
i=1 x(i, j) ∈ [0, 1] can be replaced by

∑m
i=1 x(i, j) =

1 since m = M (just consider
∑m
i=1

∑M
j=1 x(i, j)), that is

Dm,m =

x ∈ [0, 1]m×m :

m∑
j=1

x(i, j) = 1, ∀i ∈ {1, . . . ,m},

and

m∑
i=1

x(i, j) = 1, ∀j ∈ {1, . . . ,M}

}
.

Now let x be a vertex (also called an extremal point) of Dm,m. Let

F = {(i, j) : x(i, j) ∈ (0, 1)},
be the set of edges in Km,m where the weight given by x is not an integer. We shall
prove that F = ∅, which directly implies the statement of the theorem. First we
prove that F contains no circuit (i.e. a closed path that visit every vertex at most
once). Indeed suppose that F contains a circuit C. ”Clearly” C is the disjoint union
of two (partial) matchings of the same size C1 and C2. Denote by 1C1

∈ [0, 1]m×m

(respectively 1C2
∈ [0, 1]m×m) the adjacency matrix of C1 (respectively C2), and

let

ε =
1

2
min

(
min

(i,j)∈F
x(i, j); 1− max

(i,j)∈F
x(i, j)

)
.

Then clearly x + ε(1C1 − 1C2) and x − ε(1C1 − 1C2) are in the convex set under
consideration, which contradicts the fact that x is a vertex of that set (since there
is a small interval which contains x and that is contained in the convex set). Thus
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we proved that F is forest (i.e. a disjoint union of trees). Assume that F is not
empty. Then there exists one node such that exactly one edge of Km,m contains
that node and is in F . Using that the sum of the weights x on the edges that
contains that node must be 1, and the fact that exactly one of those edge has a
non integer weight, we arrive at a contradiction. Thus F = ∅, which concludes the
proof of the case m = M .

We now prove the general case of m ≤ M . To do this we enlarge our vector,
from x ∈ Dm,M we build y ∈ Dm+M,m+M as follows:

∀(i, j) ∈ {1, . . . ,m} × {1, . . . ,M}, y(i, j) = x(i, j), and y(m+ j,M + i) = x(i, j)

∀j ∈ {1, . . . ,M}, y(m+ j, j) = 1−
m∑
i=1

x(i, j)

for all other pairs(i, j), y(i, j) = 0.

Now we just proved that y can be decomposed as a convex combination of matchings
on Km+M,m+M . By considering the restriction of this assertion to Km,M we obtain
that x can be decomposed as a convex combination of matchings on Km,M . �

6.1.4. Spanning trees. Consider the complete graph Km+1 with m ≤ M
(that is the set of vertices is of size m+ 1 and all possible edges are present). Let
C contain all spanning trees of Km+1 (a spanning tree is a tree that contains all
the vertices). Note that all elements v have the same size m, d = (m + 1)m, and
Cayley’s formula gives N = (m+ 1)m−1. Here the convex hull can be described as
follows 2:

Theorem 6.3. Let C be the set of spanning trees on Km+1, then

Conv(C) =

{
x ∈ [0, 1]d :

d∑
i=1

x(i) = m,

and
∑
i∈P

x(i) ≤ |P| − 1, ∀ P ⊂ {1, . . . ,m+ 1}

}
.

Thus here the convex hull has an exponential number of facets. However,
interestingly enough, there exists efficient algorithms for the offline problem (such
as Kruskal’s method).

6.1.5. Paths. Another important example is when C represents incidence vec-
tors of paths in a graph with d edges. In the case of a directed acyclic graph one
can write the convex hull of s − t paths (that is paths which start at node s and
end at node t) as follows. Consider the following sign function for any node α:

εα(i) =

 1 if α is an end point of i
−1 if α is a start point of i
0 otherwise

2For a subset of vertices P ⊂ {1, . . . ,m+ 1} one says that an edge i ∈ {1, . . . , d} is contained
in P (denoted i ∈ P) if i connects two vertices that are in P.
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Theorem 6.4. Let C be the set of s− t paths on a directed acyclic graph with
d edges, then

Conv(C) =

{
x ∈ [0, 1]d :

d∑
i=1

εα(i)x(i) = 0, ∀ node α,

and
∑

i:εs(i)=−1

x(i) = 1,
∑

i:εt(i)=1

x(i) = 1

 .

Note that for general directed graphs (i.e. which may contain cycles), it is
impossible to obtain such a simple representation since the shortest path problem
is NP-complete.

6.2. Lower bound

We derive here an almost trivial lower bound on the attainable regret which
will serve as a benchmark in the following sections.

Theorem 6.5. There exists a set C ⊂ {0, 1}d with ||v||1 = m,∀v ∈ C, such that
for any strategy (playing on Conv(C)), the following holds true:

sup
n,m,d

sup
adversary

Rn

m
√

(n/2) log(d/m)
≥ 1.

Proof. The proof is straightforward using [Theorem 2.3, Chapter 2] and the
following set of concepts (for d a multiple of m):

C =

v ∈ {0, 1}d : ∀i ∈ {1, . . . ,m},
im∑

j=(i−1)m+1

v(j) = 1

 .

�

6.3. Expanded Exp (Exp2)

A very simple strategy for online combinatorial optimization is to consider each
point in C as an expert and play according to the Exp strategy. That is one select
at time t, Vt = Ev∼ptv where

pt(v) =
exp

(
−η
∑t−1
s=1 z

T
s v
)

∑
u∈C exp

(
−η
∑t−1
s=1 z

T
s u
) .

Using the results of the previous chapter one can directly prove the following
upper bound for the resulting strategy (which we call Exp2 for Expanded Exp).

Theorem 6.6. For any set C ⊂ {0, 1}d with ||v||1 = m,∀v ∈ C, Exp2 with

η =

√
2 log( edm )
nm satisfies:

Rn ≤ m3/2

√
2n log

(
ed

m

)
.

Proof. Simply note that log |C| ≤ log
(
d
m

)
≤ m log

(
ed
m

)
, and `(v, z) = zTt v ∈

[0,m]. �
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Surprisingly one can see that there is a gap between this upper bound and the
lower bound of the previous section. It is natural to ask whether one can improve
the analysis of Exp2. The following theorem shows that in fact Exp2 is provably
suboptimal for online combinatorial optimization.

Theorem 6.7. Let n ≥ d. There exists a subset C ⊂ {0, 1}d such that in the
full information game, for the exp2 strategy (for any learning rate η), we have

sup
adversary

Rn ≥ 0.01 d3/2
√
n.

Proof. For sake of simplicity we assume here that d is a multiple of 4 and
that n is even. We consider the following subset of the hypercube:

C =

{
v ∈ {0, 1}d :

d/2∑
i=1

vi = d/4 and(
vi = 1,∀i ∈ {d/2 + 1; . . . , d/2 + d/4}

)
or

(
vi = 1,∀i ∈ {d/2 + d/4 + 1, . . . , d}

)}
.

That is, choosing a point in C corresponds to choosing a subset of d/4 elements in
the first half of the coordinates, and choosing one of the two first disjoint intervals
of size d/4 in the second half of the coordinates.

We will prove that for any parameter η, there exists an adversary such that
Exp2 (with parameter η) has a regret of at least nd

16 tanh
(
ηd
8

)
, and that there exists

another adversary such that its regret is at least min
(
d log 2
12η , nd12

)
. As a consequence,

we have

supRn ≥ max

(
nd

16
tanh

(ηd
8

)
,min

(
d log 2

12η
,
nd

12

))
≥ min

(
max

(
nd

16
tanh

(ηd
8

)
,
d log 2

12η

)
,
nd

12

)
≥ min

(
A,

nd

12

)
,

with

A = min
η∈[0,+∞)

max

(
nd

16
tanh

(ηd
8

)
,
d log 2

12η

)
≥ min

{
min
ηd≥8

nd

16
tanh

(ηd
8

)
, min
ηd<8

max

(
nd

16
tanh

(ηd
8

)
,
d log 2

12η

)}
≥ min

{
nd

16
tanh(1), min

ηd<8
max

(
nd

16

ηd

8
tanh(1),

d log 2

12η

)}
≥ min

{
nd

16
tanh(1),

√
nd3 log 2× tanh(1)

128× 12

}
≥ min

(
0.04nd, 0.01 d3/2

√
n
)
.

Let us first prove the lower bound nd
16 tanh

(
ηd
8

)
. We define the following ad-

versary:

zt(i) =

 1 if i ∈ {d/2 + 1; . . . , d/2 + d/4} and t odd,
1 if i ∈ {d/2 + d/4 + 1, . . . , d} and t even,
0 otherwise.

This adversary always put a zero loss on the first half of the coordinates, and
alternates between a loss of d/4 for choosing the first interval (in the second half
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of the coordinates) and the second interval. At the beginning of odd rounds, any
vertex v ∈ C has the same cumulative loss and thus Exp2 picks its expert uniformly
at random, which yields an expected cumulative loss equal to nd/16. On the
other hand at even rounds the probability distribution to select the vertex v ∈ C
is always the same. More precisely the probability of selecting a vertex which
contains the interval {d/2 + d/4 + 1, . . . , d} (i.e, the interval with a d/4 loss at
this round) is exactly 1

1+exp(−ηd/4) . This adds an expected cumulative loss equal

to nd
8

1
1+exp(−ηd/4) . Finally note that the loss of any fixed vertex is nd/8. Thus we

obtain

Rn =
nd

16
+
nd

8

1

1 + exp(−ηd/4)
− nd

8
=
nd

16
tanh

(ηd
8

)
.

We move now to the dependency in 1/η. Here we consider the adversary defined
by:

zt(i) =

 1− ε if i ≤ d/4,
1 if i ∈ {d/4 + 1, . . . , d/2},
0 otherwise.

Note that against this adversary the choice of the interval (in the second half
of the components) does not matter. Moreover by symmetry the weight of any
coordinate in {d/4 + 1, . . . , d/2} is the same (at any round). Finally remark that
this weight is decreasing with t. Thus we have the following identities (in the big
sums i represents the number of components selected in the first d/4 components):

Rn =
nεd

4

∑
v∈C:v(d/2)=1 exp(−ηnzT1 v)∑

v∈S exp(−ηnzT1 v)

=
nεd

4

∑d/4−1
i=0

(
d/4
i

)(
d/4−1
d/4−i−1

)
exp(−η(nd/4− inε))∑d/4

i=0

(
d/4
i

)(
d/4
d/4−i

)
exp(−η(nd/4− inε))

=
nεd

4

∑d/4−1
i=0

(
d/4
i

)(
d/4−1
d/4−i−1

)
exp(ηinε)∑d/4

i=0

(
d/4
i

)(
d/4
d/4−i

)
exp(ηinε)

=
nεd

4

∑d/4−1
i=0

(
1− 4i

d

)(
d/4
i

)(
d/4
d/4−i

)
exp(ηinε)∑d/4

i=0

(
d/4
i

)(
d/4
d/4−i

)
exp(ηinε)

where we used
(
d/4−1
d/4−i−1

)
=
(
1 − 4i

d

)(
d/4
d/4−i

)
in the last equality. Thus taking ε =

min
(

log 2
ηn , 1

)
yields

Rn ≥ min

(
d log 2

4η
,
nd

4

) ∑d/4−1
i=0

(
1− 4i

d

)(
d/4
i

)2
min(2, exp(ηn))i∑d/4

i=0

(
d/4
i

)2
min(2, exp(ηn))i

≥ min

(
d log 2

12η
,
nd

12

)
,

where the last inequality follows from Lemma 6.2 below. This concludes the proof
of the lower bound. �

Lemma 6.2. For any k ∈ N∗, for any 1 ≤ c ≤ 2, we have∑k
i=0(1− i/k)

(
k
i

)2
ci∑k

i=0

(
k
i

)2
ci

≥ 1/3.
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Proof. Let f(c) denote the left-hand side term of the inequality. Intro-
duce the random variable X, which is equal to i ∈ {0, . . . , k} with probability(
k
i

)2
ci
/∑k

j=0

(
k
j

)2
cj . We have f ′(c) = 1

cE[X(1 − X/k)] − 1
cE(X)E(1 − X/k) =

− 1
ckVarX ≤ 0. So the function f is decreasing on [1, 2], and, from now on, we con-

sider c = 2. Numerator and denominator of the left-hand side (l.h.s.) differ only
by the 1 − i/k factor. A lower bound for the left-hand side can thus be obtained
by showing that the terms for i close to k are not essential to the value of the
denominator. To prove this, we may use the Stirling formula: for any n ≥ 1(n

e

)n√
2πn < n! <

(n
e

)n√
2πne1/(12n)(6.1)

Indeed, this inequality implies that for any k ≥ 2 and i ∈ [1, k − 1](k
i

)i( k

k − i

)k−i √
k√

2πi(k − i)
e−1/6 <

(
k

i

)
<
(k
i

)i( k

k − i

)k−i √
k√

2πi(k − i)
e1/12,

hence (k
i

)2i( k

k − i

)2(k−i) ke−1/3

2πi(k − i)
<

(
k

i

)2

<
(k
i

)2i( k

k − i

)2(k−i) ke1/6

2πi

Introduce λ = i/k and χ(λ) = 2λ

λ2λ(1−λ)2(1−λ)
. We have

[χ(λ)]k
2e−1/3

πk
<

(
k

i

)2

2i < [χ(λ)]k
e1/6

2πλ
.(6.2)

Lemma 6.2 can be numerically verified for k ≤ 106. We now consider k > 106.
For λ ≥ 0.666, since the function χ can be shown to be decreasing on [0.666, 1],

the inequality
(
k
i

)2
2i < [χ(0.666)]k e1/6

2×0.666×π holds. We have χ(0.657)/χ(0.666) >

1.0002. Consequently, for k > 106, we have [χ(0.666)]k < 0.001 × [χ(0.657)]k/k2.
So for λ ≥ 0.666 and k > 106, we have(
k

i

)2

2i < 0.001× [χ(0.657)]k
e1/6

2π × 0.666× k2
< [χ(0.657)]k

2e−1/3

1000πk2

= min
λ∈[0.656,0.657]

[χ(λ)]k
2e−1/3

1000πk2

<
1

1000k
max

i∈{1,...,k−1}∩[0,0.666k)

(
k

i

)2

2i.(6.3)

where the last inequality comes from (6.2) and the fact that there exists i ∈
{1, . . . , k − 1} such that i/k ∈ [0.656, 0.657]. Inequality (6.3) implies that for any
i ∈ {1, . . . , k}, we have∑

5
6k≤i≤k

(
k

i

)2

2i <
1

1000
max

i∈{1,...,k−1}∩[0,0.666k)

(
k

i

)2

2i <
1

1000

∑
0≤i<0.666k

(
k

i

)2

2i.

To conclude, introducing A =
∑

0≤i<0.666k

(
k
i

)2
2i, we have∑k

i=0(1− i/k)
(
k
i

)(
k
k−i
)
2i∑k

i=0

(
k
i

)(
k
k−i
)
2i

>
(1− 0.666)A

A+ 0.001A
≥ 1

3
.

�
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6.4. OMD with negative entropy

Here we show that OMD with the negative entropy attains the optimal rate.
Note that, on the contrary to the simplex case, in general OMD with negative
entropy on Conv(C) and discrete Exp on C are two different strategies.

Theorem 6.8. For any set C ⊂ {0, 1}d with ||v||1 = m,∀v ∈ C, OMD with

F (x) =
∑d
i=1 xi log xi − xi, and η =

√
2 log( dm )
nm satisfies:

Rn ≤ m

√
2n log

(
d

m

)
.

Proof. Using Theorem 5.2 and Lemma 5.9, it suffices to show that

F (v)− F (V1) ≤ m log
d

m
,∀v ∈ C.

This follows from:

F (v)− F (V1) ≤
d∑
i=1

V1(i) log
1

V1(i)
≤ m log

(
d∑
i=1

V1(i)

m

1

V1(i)

)
= m log

d

m
.

�

6.5. Follow the perturbated leader (FPL)

In this section we consider a completely different strategy, called Follow the
Perturbated Leader. The idea is very simple. It is clear that following the leader,
i.e. choosing at time t:

argmin
v∈C

t−1∑
s=1

zTs v,

is a strategy that can be hazardous. In FPL, this choice is regularized by adding a
small amount of noise. More precisely let ξ1, . . . , ξn be an i.i.d sequence of random
variables uniformly drawn on [0, 1/η]d. Then FPL corresponds to the decision:

argmin
v∈C

(
ξt +

t−1∑
s=1

zs

)T
v,

We analyze this strategy in a restrictive framework, namely we only consider obliv-
ious adversaries (that is the sequence (zt) is fixed and can not depend on the moves
vt of the player).

Theorem 6.9. For any oblivious adversary, the FPL strategy satisfies for any
u ∈ C:

E

(
n∑
t=1

zTt (vt − u)

)
≤ m

2η
+ ηmdn.

In particular with η =
√

1
2dn one obtains:

E

(
n∑
t=1

zTt (vt − u)

)
≤ m
√

2dn

The first step of the proof is the so-called Be-The-Leader Lemma.
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Lemma 6.3. Let

a∗t = argmin
a∈A

t∑
s=1

`(a, zt).

Then
n∑
t=1

`(a∗t , zt) ≤
n∑
t=1

`(a∗n, zt).

Proof. The proof goes by induction on n. For n = 1 it is clearly true. From
n to n+ 1 it follows from:

n+1∑
t=1

`(a∗t , zt) ≤ `(a∗n+1, zn+1) +

n∑
t=1

`(a∗n, zt) ≤
n+1∑
t=1

`(a∗n+1, zt).

�

We can now prove the theorem.

Proof. Let

v∗t = argmin
v∈C

(
ξ1 +

t∑
s=1

zs

)T
v.

Using the BTL Lemma with

`(v, zt) =

{
(ξ1 + z1)T v1 if t = 1,

zTt v if t > 1,

one obtains that for any u ∈ C,

ξT1 v
∗
1 +

n∑
t=1

zTt v
∗
t ≤ ξT1 u+

n∑
t=1

zTt u.

In particular we get

E
n∑
t=1

zTt (v∗t − u) ≤ m

2η
.

Now let

ṽt = argmin
v∈C

(
ξt +

t∑
s=1

zs

)T
v.

Since the adversary is oblivious, ṽt has the same distribution than v∗t , in particular
we have EzTt v∗t = EzTt ṽt, which implies

E
n∑
t=1

zTt (ṽt − u) ≤ m

2η
.

We show now that EzTt (vt − ṽt) ≤ ηmd which shall conclude the proof. Let

h(ξ) = zTt

argmin
v∈C

(
ξ +

t−1∑
s=1

zs

)T
v

 .
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Then one has

EzTt (vt − ṽt) = Eh(ξt)− Eh(ξt + zt)

= ηd
∫
ξ∈[0,1/η]d

h(ξ)dξ − ηd
∫
ξ∈zt+[0,1/η]d

h(ξ)dξ

≤ mηd
∫
ξ∈[0,1/η]d\{zt+[0,1/η]d}

= mP (∃i ∈ {1, . . . , d} : ξ1(i) ≤ zt(i))
≤ ηmd.

�

Note that the bound we proved for FPL is suboptimal by a factor
√
d. It is

likely that in fact FPL is provably suboptimal (a similar reasoning than for Exp2
should be possible). Nonetheless FPL has the advantage that it is computationally
efficient as soon as there exists efficient algorithms for the offline problem. This
is an important property, and the major open problem in online combinatorial
optimization is to decide whether there exists a strategy with this property and
optimal regret bounds.
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CHAPTER 7

Limited feedback

In this chapter we attack the limited feedback case. In the so-called bandit ver-
sion, one only observes `(at, zt) rather than the adversary’s move zt. Thus it is not
possible to use OMD since one does not have access to the gradient ∇`(at, zt). First
we describe the general idea to attack this problem, namely to add randomization
in order to build unbiased estimates of the gradients.

7.1. Online Stochastic Mirror Descent (OSMD)

The idea of stochastic gradient descent is very simple: assume that one wants
to play at. Then one builds a random perturbation ãt of at, with the property that
upon observing `(ãt, zt), one can build an estimate g̃t of ∇`(at, zt). Then one feeds
the gradient descent algorithm with g̃t instead of ∇`(at, zt) and follows the same
scheme at point at+1. This strategy allows to bound the pseudo-regret defined by:

Rn = E
n∑
t=1

`(ãt, zt)−min
a∈A

E
n∑
t=1

`(a, zt).

Indeed one can prove the following theorem.

Theorem 7.1. For any closed convex action set A, for any subdifferentiable
loss with bounded subgradient ||∇`(a, z)||∗ ≤ G,∀(a, z) ∈ A×Z, the OSMD strategy
with a Legendre function F on D such that its restriction to A is α-strongly convex
with respect to ||·||, and with loss estimate g̃t such that E(g̃t|at) = ∇`(at, zt) satisfies

Rn ≤
supa∈A F (a)− F (a1)

η
+

η

2α

n∑
t=1

E||g̃t||2∗ +G

n∑
t=1

E||at − ãt||.

Moreover if the loss is linear, that is `(a, z) = aT z, then

Rn ≤
supa∈A F (a)− F (a1)

η
+

η

2α

n∑
t=1

E||g̃t||2∗ +G

n∑
t=1

E||at − E(ãt|at)||.

Proof. Using Theorem 5.2 one directly obtains:

n∑
t=1

g̃Tt (at − a) ≤ F (a)− F (a1)

η
+

η

2α

n∑
t=1

||g̃t||2∗.

51
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Moreover, using E(g̃t|at) = ∇`(at, zt), we have:

E
n∑
t=1

(`(ãt, zt)− `(a, zt)) = E
n∑
t=1

(`(ãt, zt)− `(at, zt) + `(at, zt)− `(a, zt))

≤ GE
n∑
t=1

||at − ãt||+ E
n∑
t=1

∇`(at, zt)T (at − a)

= GE
n∑
t=1

||at − ãt||+ E
n∑
t=1

g̃Tt (at − a),

which concludes the proof of the first regret bound. The case of a linear loss follows
very easily from the same computations. �

Unfortunately the above theorem is not strong enough to derive optimal regret
bounds, because in most cases it is not possible to obtain a satisfactory bound
on E||g̃t||2∗. In fact the key is to replace the rigid norm || · ||∗ by a local norm
which depends on the current point at. This is achieved with the following theorem
(whose proof follows the same line than Theorem 7.1, by using Theorem 5.1 instead
of Theorem 5.2).

Theorem 7.2. For any closed convex action set A, for any subdifferentiable
loss, the OSMD strategy with a Legendre function F on D, and with loss estimate
g̃t such that E(g̃t|at) = ∇`(at, zt) satisfies

Rn ≤
supa∈A F (a)− F (a1)

η
+

1

η

n∑
t=1

EDF∗

(
∇F (at)−ηg̃t,∇F (at)

)
+G

n∑
t=1

E||at−ãt||.

Moreover if the loss is linear, that is `(a, z) = aT z, then

Rn ≤
supa∈A F (a)− F (a1)

η
+

1

η

n∑
t=1

EDF∗

(
∇F (at)−ηg̃t,∇F (at)

)
+G

n∑
t=1

E||at−E(ãt|at)||.

The term EDF∗

(
∇F (at)− ηg̃t,∇F (at)

)
corresponds to a ”local” norm of ηg̃t

in the following sense.

Proposition 7.1. If F is twice continuously differentiable, and if its Hessian
∇2F (x) is invertible ∀x ∈ D, then ∀x, y ∈ D, there exists ζ ∈ D such that ∇F (ζ) ∈
[∇F (x),∇F (y)] and:

DF∗(∇F (x),∇F (y)) =
1

2
||∇F (x)−∇F (y)||2(∇2F (ζ))−1 ,

where ||x||2Q = xTQx.

Proof. Since F is twice continuously differentiable, the inverse function the-
orem implies that:

J(∇F )−1(∇F (x)) = (J∇F (x))−1.

In other words, since ∇F ∗ = (∇F )−1,

∇2F ∗(∇F (x)) = (∇2F (x))−1.

The proposition then follows from a simple Taylor’s expansion. �
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This proposition shows that for some ζt such that∇F (ζt) ∈ [∇F (at)−ηg̃t,∇F (at)],
we have:

DF∗

(
∇F (at)− ηg̃t,∇F (at)

)
=
η2

2
||g̃t||2(∇2F (ζt))−1 .

The key to obtain optimal regret bounds will be to make the above equality more
precise (in terms of ζt) for specific Legendre functions F (or in other words to take
care of the third order error term in the Taylor’s expansion).

7.2. Online combinatorial optimization with semi-bandit feedback

In this section we consider the online combinatorial optimization problem: the
action set is C ⊂ {0, 1}d, Z = [0, 1]d, and `(v, z) = vT z. We call semi-bandit feed-
back, the case when after playing Vt ∈ C, one observes (zt(1)Vt(1), . . . , zt(d)Vt(d)).
That is one observes only the coordinates of the loss that were active in the concept
Vt that we choosed. It is thus a much weaker feedback than in the full information
case, but it is also stronger than in the bandit version. Note that the semi-bandit
setting includes the famous multi-armed bandit problem, which simply corresponds
to C = {e1, . . . , ed}.

Recall that in this setting one plays Vt at random from a probability pt ∈ ∆N

(where |C| = N) to which corresponds an average point at ∈ Conv(C). Surprisingly,
we show that this randomization is enough to obtain a good unbiased estimate of
the loss and that it is not necessary to add further perturbations to at. Thus here
we have ãt = Vt, and in particular E(ãt|at) = at.

Note that ∇`(v, z) = z, thus g̃t should be an estimate of zt. The following
simple formula gives an unbiased estimate:

(7.1) g̃t(i) =
zt(i)Vt(i)

at(i)
,∀i ∈ {1, . . . , d}.

Note that this is a valid estimate since it makes only use of (zt(1)Vt(1), . . . , zt(d)Vt(d)).
Moreover it is unbiased with respect to the random drawing of Vt from pt since by
definition EVt∼ptVt(i) = at(i). In other words E(g̃t|at) = ∇`(at, zt).

Using Theorem 7.2 we directly obtain:

(7.2) Rn ≤
supa∈A F (a)− F (a1)

η
+

1

η

n∑
t=1

EDF∗

(
∇F (at)− ηg̃t,∇F (at)

)
.

We show now how to use this bound to obtain concrete performances for OSMD
with the negative entropy. Then we show that one can improve the results by
logarithmic factors, using a more subtle Legendre function.

7.2.1. Negative entropy.

Theorem 7.3. OSMD with the negative entropy F (x) =
∑d
i=1 xi log xi −∑d

i=1 xi satisfies:

Rn ≤
m log d

m

η
+
η

2

n∑
t=1

d∑
i=1

at(i)g̃t(i)
2.
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In particular with the estimate (7.1) and η =
√

2m log dm
nd ,

Rn ≤
√

2mdn log
d

m
.

Proof. We already showed in the proof of Theorem 6.8 that

F (a)− F (a1) ≤ m log
d

m
.

Moreover we showed in Chapter 5 that:

DF∗

(
∇F (at)− ηg̃t,∇F (at)

)
=

d∑
i=1

at(i)Θ(−ηg̃t(i)),

where Θ : x ∈ R 7→ exp(x) − 1 − x. Thus Lemma 5.5 ends the proof of the first
inequality (since g̃t(i) ≥ 0). The second inequality follows from:

Eat(i)g̃t(i)2 ≤ E
Vt(i)

at(i)
= 1.

�

7.2.2. Legendre function derived from a potential. We greatly general-
ize the negative entropy with the following definition.

Definition 7.1. Let ω ≥ 0. A function ψ : (−∞, a) → R∗+ for some a ∈
R ∪ {+∞} is called an ω-potential if it is convex, continuously differentiable, and
satisfies

lim
x→−∞

ψ(x) = ω lim
x→a

ψ(x) = +∞

ψ′ > 0

∫ ω+1

ω

|ψ−1(s)|ds < +∞.

To a potential ψ we associate the function Fψ defined on D = (ω,+∞)d by:

Fψ(x) =

d∑
i=1

∫ xi

ω

ψ−1(s)ds.

In these lecture notes we restrict our attention to 0-potentials. A non-zero ω
might be used to derive high probability regret bounds (instead of pseudo-regret
bounds).

Note that with ψ(x) = exp(x) we recover the negative entropy for Fψ.

Lemma 7.1. Let ψ be a (0-)potential. Then Fψ is Legendre, and for all u, v ∈
D∗ = (−∞, a)d such that ui ≤ vi,∀i ∈ {1, . . . , d},

DF∗(u, v) ≤ 1

2

d∑
i=1

ψ′(vi)(ui − vi)2.

Proof. It is easy to check that F is a Legendre function. Moreover, since
∇F ∗(u) = (∇F )−1(u) =

(
ψ(u1), . . . , ψ(ud)

)
, we obtain

DF∗(u, v) =

d∑
i=1

(∫ ui

vi

ψ(s)ds− (ui − vi)ψ(vi)

)
.
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From a Taylor expansion, we have

DF∗(u, v) ≤
d∑
i=1

max
s∈[ui,vi]

1

2
ψ′(s)(ui − vi)2.

Since the function ψ is convex, and ui ≤ vi, we have

max
s∈[ui,vi]

ψ′(s) ≤ ψ′
(

max(ui, vi)
)
≤ ψ′(vi),

which gives the desired result. �

Theorem 7.4. Let ψ be a potential. OSMD with Fψ and non-negative loss
estimates (g̃t) satisfies:

Rn ≤
supa∈A Fψ(a)− Fψ(a1)

η
+
η

2

n∑
t=1

d∑
i=1

E
g̃t(i)

2

(ψ−1)′(at(i))
.

In particular with the estimate (7.1), ψ(x) = (−x)−q (q > 1) and η =
√

2
q−1

m1−2/q

d1−2/q ,

Rn ≤ q
√

2

q − 1
mdn.

With q = 2 this gives:

Rn ≤ 2
√

2mdn.

Proof. First note that since D∗ = (−∞, a)d and g̃t has non-negative coordi-
nates, OSMD is well defined (that is (5.4) is satisfied).

The first inequality trivially follows from (7.2), Lemma 7.1, and the fact that
ψ′(ψ−1(s)) = 1

(ψ−1)′(s) .

Let ψ(x) = (−x)−q. Then ψ−1(x) = −x−1/q and F (x) = − q
q−1

∑d
i=1 x

1−1/q
i .

In particular note that by Hölder’s inequality, since
∑d
i=1 a1(i) = m:

Fψ(a)− Fψ(a1) ≤ q

q − 1

d∑
i=1

a1(i)1−1/q ≤ q

q − 1
m(q−1)/qd1/q.

Moreover note that (ψ−1)′(x) = 1
qx
−1−1/q, and

d∑
i=1

E
g̃t(i)

2

(ψ−1)′(at(i))
≤ q

d∑
i=1

at(i)
1/q ≤ qm1/qd1−1/q,

which ends the proof. �

7.3. Online linear optimization with bandit feedback

In this section we consider online linear optimization over a finite set, that is
A ⊂ Rd is a finite set of points with |A| = N , Z ⊂ Rd, and `(a, z) = aT z. As far
as regret bound goes, the restriction to finite set is not a severe one, since given a
convex set one can always build a discretization A of that set such that the regret
with respect to A is almost the same than the regret with respect to the convex set.
However a strategy resulting from such a discretization is often not computationally
efficient. Also note that typically in that case logN ∼ d.
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Without loss of generality we restrict our attention to sets A of full rank, that
is such that linear combinations of A span Rd. If it is not the case then one can
rewrite the elements of A in some lower dimensional vector space, and work there.

In this section we consider a bounded scalar loss, that is A and Z are such that
|`(a, z)| ≤ G. Note that so far we have been mainly working on dual assumptions,
where A was bounded in some norm, and the gradient of the loss was bounded in
the dual norm. Of course by Hölder’s inequality this imply a bound on the scalar
loss. However, it is important to note that in some cases one may exploit the dual
assumption and prove better regret bounds than what would get by simply assum-
ing a bounded scalar loss. This was in fact proved in Chapter 6, where we saw that
Exp was provably suboptimal for online combinatorial optimization, while one can
show that with only a bounded scalar loss assumption Exp is an optimal strategy.
The main reason for restricting our attention to bounded scalar loss is simply that
we do not know how to exploit a dual assumption in the bandit framework. More
precisely the best strategy that we have (and that we will describe) is based on Exp
(with a good perturbation and a good estimator for zt), and we know that such
strategies can not exploit (in general) dual assumptions.

The rest of this section is organized as follows. First we show a useful result
from convex geometry, namely John’s Theorem. Then we describe the strategy,
called Exp2 with John’s exploration, and prove its regret bound. Finally we show
how this regret bound can be improved in the special case of the euclidean ball.

7.3.1. John’s ellipsoid. John’s theorem concerns the ellipsoid E of minimal
volume enclosing a given convex set K (which we shall call John’s ellipsoid of K).
Basically it states that E as many contact points with K, and that those contact
points are ”nicely” distributed, that is they form almost an orthonormal basis.

Theorem 7.5. Let K ⊂ Rd be a convex set. If the ellipsoid E of minimal
volume enclosing K is the unit ball in some norm derived from a scalar product
〈·, ·〉, then there exists M (with M ≤ d(d + 1)/2 + 1) contact points u1, . . . , uM
between E and K, and q ∈ ∆M , such that

x = d

M∑
i=1

q(i)〈x, ui〉ui,∀x ∈ Rd.

In fact John’s theorem is a if and only if, but here we shall only need the
direction stated in the theorem. Note also that the above theorem immediately
gives a formula for the norm of a point:

(7.3) 〈x, x〉 = d

M∑
i=1

q(i)〈x, ui〉2.

Proof. First note that it is enough to prove the statement for the standard
scalar product 〈x, y〉 = xT y, since one can always rewrite everything in an orthonor-
mal basis for 〈·, ·〉.

We will prove that

Id
d
∈ Conv

(
uuT , u contact point between K and E

)
.
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This clearly implies the theorem by Carathéodory’s Theorem.

Let us proceed by contradiction and assume that this is not the case. Then
there exists a linear functional Φ on the space of d× d matrices such that:

Φ

(
Id
d

)
< Φ

(
uuT

)
,∀u contact point between K and E .

Now observe that Φ can be written as a d× d matrix H = (hi,j) such that for any
matrix A = (ai,j):

Φ(A) =
∑
i,j

hi,jai,j .

Since clearly Tr
(
Id
d

)
= 1 and Tr

(
uuT

)
= 1 (the only non-zero eigenvalue of uuT

is 1 because u is a unit vector since it lies on the surface on E), one can remove
a constant to the diagonal entries of H while not changing the inequality between
Φ
(
Id
d

)
and Φ

(
uuT

)
. Thus we can assume that Tr(H) = 0, or in other words that

Φ
(
Id
d

)
= 0 (in particular we now have uTHu > 0 for any contact point u). Finally

note that Id
d and uuT are symmetric matrices so we can also assume that H is

symmetric (just consider H +HT ).

Now consider the following ellipsoid:

Eδ = {x ∈ Rd : xT (Id + δH)−1x ≤ 1}.

First note that Eδ tends to E when δ tends to 0, and that if u is a contact point
between E and K, then for δ small enough:

uT (Id + δH)−1u = uT (Id − δH)u+ o(δ) = 1− δuTHu+ o(δ) < 1.

Thus, by continuity, one ”clearly” has K ⊂ Eδ. It remains to prove that vol(Eδ) <
vol(E). By definition this is equivalent to showing that the eigenvalues µ1, . . . , µd
of (Id + δH) satisfy

∏d
i=1 µi < 1. This latter inequality is implied by the AM/GM

inequality and the fact that Tr(Id + δH) = n =
∑d
i=1 µi. �

7.3.2. John’s exploration. On the contrary to what happened in the semi-
bandit case, here the randomization used to ”play” points in Conv(A) is not enough
to build a good estimate of zt. We propose here a perturbation based on John’s
ellipsoid for Conv(A).

First we need to perform a preprocessing step:

• Find John’s ellipsoid for Conv(A): E = {x ∈ Rd : (x−x0)TH−1(x−x0) ≤
1}. The first preprocessing step is to translate everything by x0. In other
words we assume now that A is such that x0 = 0.

• Consider the inner product: 〈x, y〉 = xTHy.
• We can now assume that we are playing on A′ = H−1A, and that
`(a′, z) = 〈a′, z〉. Indeed: 〈H−1a, z〉 = aT z. Moreover note that John’s
ellipsoid for Conv(A′) is the unit ball for the inner product 〈·, ·〉 (since
〈H−1x,H−1x〉 = xTH−1x).

• Find the contact points u1, . . . , uM and q ∈ ∆M that satisfy Theorem 7.5
for Conv(A′). Note that the contact points are in A′, thus they are valid
points to play.
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In the following we drop the prime on A′. More precisely we play on a set A such
that John’s ellipsoid for Conv(A) is the unit ball for some inner product 〈·, ·〉, and
the loss is `(a, z) = 〈a, z〉.

We can now describe John’s exploration. Assume that we have a strategy
that prescribes to play at random from probability distribution pt. Then John’s
perturbation plays ãt ∈ A as follows:

• with probability 1− γ, play a point at random from pt,
• with probability γq(i), play ui.

7.3.3. Exp2 with John’s exploration. First we describe how to obtain an
unbiased estimate of zt, upon observing 〈ãt, z〉 where ãt is drawn at random from
a probability distribution p̃t on A (with p̃t(a) > 0, ∀a ∈ A). Note that we use p̃t
because it will correspond to a perturbation with John’s exploration of some basic
pt.

Recall that the outer product u ⊗ u is defined as the linear mapping from Rd
to Rd such that u ⊗ u(x) = 〈u, x〉u. Note that one can also view u ⊗ u as a d × d
matrix, so that the evaluation of u ⊗ u is equivalent to a multiplication by the
corresponding matrix. Now let:

Pt =
∑
a∈A

p̃t(a)a⊗ a.

Note that this matrix is invertible, since A is of full rank and p̃t(a) > 0, ∀a ∈ A.
The estimate for zt is given by:

(7.4) g̃t = P−1
t (ãt ⊗ ãt) zt.

Note that this is a valid estimate since (ãt ⊗ ãt) zt = 〈ãt, zt〉ãt and P−1
t are ob-

served quantities. Moreover it is also clearly an unbiased estimate.

Now Exp2 with John’s exploration and estimate (7.4) corresponds to playing
according to the following probability distribution:

p̃t(a) = (1− γ)pt(a) + γ

M∑
i=1

qi1a=ui ,

where

pt(a) =
exp

(
−η
∑t−1
s=1〈a, g̃t〉

)
∑
b∈A exp

(
−η
∑t−1
s=1〈b, g̃t〉

) .
Theorem 7.6. Exp2 with John’s exploration and estimate (7.4) satisfies for

ηGd
γ ≤ 1:

Rn ≤ 2γGn+
logN

η
+ ηG2nd.

In particular with γ = ηGd, and η =
√

logN
3ndG2 :

Rn ≤ 2G
√

3nd logN.
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Note that for combinatorial optimization, G = m and logN ≤ m log de
m , thus

the above result implies the bound:

Rn ≤ 2m3/2

√
3dn log

de

m
.

I conjecture that this bound is suboptimal, and that there exists an algorithm with
a regret bound of order m

√
dn.

Proof. Using for instance Theorem 7.2 on ∆N (with a slight modification to
win in the constants), and the remarks after Theorem 5.1, one can easily show that,
if:

η〈a, g̃t〉 ≤ 1,∀a ∈ A,
then

Rn ≤ 2γGn+ (1− γ)

(
logN

η
+ ηE

n∑
t=1

∑
a∈A

pt(a)〈a, g̃t〉2
)

≤ 2γGn+
logN

η
+ ηE

n∑
t=1

∑
a∈A

p̃t(a)〈a, g̃t〉2.

Thus it remains to bound 〈a, g̃t〉 and E
∑
a∈A p̃t(a)〈a, g̃t〉2. Let us start with the

latter quantity: ∑
a∈A

p̃t(a)〈a, g̃t〉2 =
∑
a∈A

p̃t(a)〈g̃t, (a⊗ a)g̃t〉

= 〈g̃t, Ptg̃t〉
= 〈ãt, zt〉2〈P−1

t ãt, PtP
−1
t ãt〉

≤ G2〈P−1
t ãt, ãt〉.

Now we use a spectral decomposition of Pt in an orthonormal basis for 〈·, ·〉 and
write:

Pt =

d∑
i=1

λivi ⊗ vi.

In particular we have P−1
t =

∑d
i=1

1
λi
vi ⊗ vi and thus:

E〈P−1
t ãt, ãt〉 =

d∑
i=1

1

λi
E〈(vi ⊗ vi)ãt, ãt〉

=

d∑
i=1

1

λi
E〈(ãt ⊗ ãt)vi, vi〉

=

d∑
i=1

1

λi
〈Ptvi, vi〉

=

d∑
i=1

1

λi
〈λivi, vi〉

= d.
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This concludes the bound for E
∑
a∈A p̃t(a)〈a, g̃t〉2. We turn now to 〈a, g̃t〉:

〈a, g̃t〉 = 〈ãt, zt〉〈a, P−1
t ãt〉

≤ G〈a, P−1
t ãt〉

≤ G

min1≤i≤d λi
,

where the last inequality follows from the fact that 〈a, a〉 ≤ 1 for any a ∈ A, since
A is included in the unit ball. Now to conclude the proof we need to lower bound
the smallest eigenvalue of Pt. This can be done as follows, using (7.3),

min
1≤i≤d

λi = min
x∈Rd:〈x,x〉=1

〈x, Ptx〉

≥ min
x∈Rd:〈x,x〉=1

γ

M∑
i=1

〈x, q(i)(ui ⊗ ui)x〉

= min
x∈Rd:〈x,x〉=1

γ

M∑
i=1

q(i)〈x, ui〉2

=
γ

d
.

�

7.3.4. Improved strategies for specific action sets. We just saw that in
general, under the bounded scalar loss assumption, one can obtain a regret bound
of order d

√
n. As we will see in the next section, this is unimprovable in the sense

that for some action set, one has a matching lower bound. However note that in
Section 7.2.2 we proved that for the simplex, one can obtain a regret bound of
order

√
dn (we shall also prove that this is the optimal rate for this set in the next

section). The key was to resort to OSMD, with a Legendre function adapted to
the simplex (in some sense). Here we prove an improved regret bound for another
action set: the euclidean ball. Unfortunately we get an extraneous logarithmic
factor, we prove only a regret bound of order

√
dn log n.

In the following || · || denotes the euclidean norm. We consider the online linear
optimization problem on A = B2 = {x ∈ Rd : ||x|| ≤ 1}. We perform the following
perturbation of a point at in the interior of A:

• Let ξt ∼ Ber(||at||), It ∼ unif({1, . . . , d}, and εt ∼ Rad.
• If ξt = 1, play ãt = at

||at|| ,

• if ξt = 0, play ãt = εteIt ,

It is easy to check that this perturbation is unbiased, in the sense that:

(7.5) E(ãt|at) = at.

We describe now how to build the unbiased estimate of the adversary’s move:

(7.6) g̃t = (1− ξt)
d

1− ||at||
(zTt ãt)ãt.

Again it is easy to check that this is an unbiased estimate, that is:

(7.7) E(g̃t|at) = zt
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Theorem 7.7. Consider the online linear optimization problem on A = B2,
and with Z = B2. Then OSMD on A′ = {x ∈ Rd : ||x|| ≤ 1− γ} with the estimate
(7.6), a1 = 0, and F (x) = − log(1−||x||)−||x|| satisfies for any η such that ηd ≤ 1

2 :

(7.8) Rn ≤ γn+
log γ−1

η
+ η

n∑
t=1

E(1− ||at||)||g̃t||2.

In particular with γ = 1√
n

and η =
√

logn
2nd ,

(7.9) Rn ≤ 3
√
dn log n.

Proof. First it is clear that by playing on A′ instead of A = B2, one incurs
an extra γn regret. Second note that F is stricly convex (it is the composition of a
convex and nondecreasing function with the euclidean norm) and:

(7.10) ∇F (x) =
x

1− ||x||
,

in particular F is Legendre on D = {x ∈ Rd : ||x|| < 1}, and one has D∗ = Rd, thus
(5.4) is always satisfied and OSMD is well defined. Now the regret with respect to
A′ can be bounded as follows, thanks to Theorem 7.2, (7.5), and (7.7)

supa∈A′ F (a)− F (a1)

η
+

1

η

n∑
t=1

EDF∗

(
∇F (at)− ηg̃t,∇F (at)

)
.

The first term is clearly bounded by log γ−1

η . For the second term we need to do a

few computations (the first one follows from (7.10)):

∇F ∗(u) =
u

1 + ||u||
,

F ∗(u) = − log(1 + ||u||) + ||u||,

DF∗(u, v) =
1

1 + ||v||

(
||u|| − ||v||+ ||u|| · ||v|| − vTu− (1 + ||v||) log

(
1 +
||u|| − ||v||

1 + ||v||

))
.

Let Θ(u, v) such that DF∗(u, v) = 1
1+||v||Θ(u, v). First note that

(7.11)
1

1 + ||∇F (at)||
= 1− ||at||,

thus to prove (7.8) it remains to show that Θ(u, v) ≤ ||u−v||2, for u = ∇F (at)−ηg̃t
and v = ∇F (at). In fact we shall prove that this inequality holds true as soon as
||u||−||v||

1+||v|| ≥ −
1
2 . This is the case for the pair (u, v) under consideration, since by the

triangle inequality, equations (7.6) and (7.11), and the assumption on η:

||u|| − ||v||
1 + ||v||

≥ − η||g̃t||
1 + ||v||

≥ −ηd ≥ −1

2
.
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Now using that log(1 + x) ≥ x − x2, ∀x ≥ − 1
2 , we obtain that for u, v such that

||u||−||v||
1+||v|| ≥ −

1
2 ,

Θ(u, v) ≤ (||u|| − ||v||)2

1 + ||v||
+ ||u|| · ||v|| − vTu

≤ (||u|| − ||v||)2 + ||u|| · ||v|| − vTu
= ||u||2 + ||v||2 − ||u|| · ||v|| − vTu
= ||u− v||2 + 2vTu− ||u|| · ||v|| − vTu
≤ ||u− v||2,

which concludes the proof of (7.8). Now for the proof of (7.9) it suffices to note
that:

E(1− ||at||)||g̃t||2 = (1− ||at||)
d∑
i=1

1− ||at||
d

d2

(1− ||at||)2
(zTt ei)

2 = d||zt||2 ≤ d,

along with straightforward computations. �

7.4. Lower bounds

We prove here three lower bounds. First we consider online combinatorial
optimization under both semi-bandit and bandit feedback. In the former case the
lower bound matches the upper bound obtained in Section 7.2.2, while in the latter

case there is a gap of
√
m log de

m as pointed out after Theorem 7.6. The third lower

bound shows that Exp2 with John’s exploration is essentialy optimal under the
bounded scalar loss assumption, in the sense that for a given N , there exists a set
A with |A| ≤ N and such that the regret bound of Exp2 is unimprovable (up to a
logarithmic factor).

Theorem 7.8. Let n ≥ d ≥ 2m. There exists a subset A ⊂ {0, 1}d such that
||v||1 = m, ∀v ∈ C, and for any strategy, under semi-bandit feedback:

(7.12) sup
adversaries s.t. zt∈[0,1]d

Rn ≥ 0.02
√
mdn,

and under bandit feedback:

(7.13) sup
adversaries s.t. zt∈[0,1]d

Rn ≥ 0.02m
√
dn.

Moreover it also holds that |A| = (bd/mc)m, and for any strategy, under bandit
feedback:

(7.14) sup
adversaries s.t. |zTt a|≤1,∀a∈A

Rn ≥ 0.03
√
mdn

Proof. For sake of notation we assume here that d is a multiple of m, and we

identify {0, 1}d with {0, 1}m× d
m . We consider the following set of actions:

A = {a ∈ {0, 1}m× d
m : ∀i ∈ {1, . . . ,m},

d/m∑
j=1

a(i, j) = 1}.

In other words the player is playing in parallel m finite games with d/m actions.
We divide the proofs in five steps. From step 1 to 4 we restrict our attention

to the bandit case, with zt ∈ [0, 1]m×
d
m . Then in step 5 we show how to easily
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apply the same proof technique for semi-bandit and for bandit with bounded scalar
loss. Moreover from step 1 to 3 we restrict our attention to the case of determin-
istic strategies for the player, and we show how to extend the results to arbitrary
strategies in step 4.

First step: definitions.

We denote by Ii,t ∈ {1, . . . ,m} the random variable such that at(i, Ii,t) = 1.
That is, Ii,t is the action chosen at time t in the ith game. Moreover let τ be drawn
uniformly at random in {1, . . . , n}.

In this proof we consider random adversaries indexed by A. More precisely,
for α ∈ A, we define the α-adversary as follows: For any t ∈ {1, . . . , n}, zt(i, j) is
drawn from a Bernoulli distribution with parameter 1

2 − εα(i, j). In other words,

against adversary α, in the ith game, the action j such that α(i, j) = 1 has a
loss slightly smaller (in expectation) than the other actions. We note Eα when we
integrate with respect to the loss generation process of the α-adversary. We note
Pi,α the law of α(i, Ii,τ ) when the player faces the α-adversary. Remark that we
have Pi,α(1) = Eα 1

n

∑n
t=1 1α(i,Ii,t)=1, hence, against the α-adversary we have:

Rn = Eα
n∑
t=1

m∑
i=1

ε1α(i,Ii,t)6=1 = nε

m∑
i=1

(1− Pi,α(1)) ,

which implies (since the maximum is larger than the mean)

(7.15) max
α∈A

Rn ≥ nε
m∑
i=1

(
1− 1

(d/m)m

∑
α∈A

Pi,α(1)

)
.

Second step: information inequality.

Let P−i,α be the law of α(i, Ii,τ ) against the adversary which plays like the
α-adversary except that in the ith game, the losses of all coordinates are drawn
from a Bernoulli of parameter 1/2 (we call it the (−i, α)-adversary and we note
E(−i,α) when we integrate with respect to its loss generation process). Now we use
Pinsker’s inequality (see Lemma 7.2 below) which gives:

Pi,α(1) ≤ P−i,α(1) +

√
1

2
KL(P−i,α,Pi,α).

Moreover note that by symmetry of the adversaries (−i, α),

1

(d/m)m

∑
α∈A

P−i,α(1) =
1

(d/m)m

∑
α∈A

E(−i,α)α(i, Ii,τ )

=
1

(d/m)m

∑
β∈A

1

d/m

∑
α:(−i,α)=(−i,β)

E(−i,α)α(i, Ii,τ )

=
1

(d/m)m

∑
β∈A

1

d/m
E(−i,β)

∑
α:(−i,α)=(−i,β)

α(i, Ii,τ )

=
1

(d/m)m

∑
β∈A

1

d/m

=
m

d
,(7.16)
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and thus, thanks to the concavity of the square root,

(7.17)
1

(d/m)m

∑
α∈A

Pi,α(1) ≤ m

d
+

√
1

2(d/m)m

∑
α∈A

KL(P−i,α,Pi,α).

Third step: computation of KL(P−i,α,Pi,α) with the chain rule for Kullback-Leibler
divergence.

Note that since the forecaster is deterministic, the sequence of observed losses
(up to time n) Wn ∈ {0, . . . ,m}n uniquely determines the empirical distribution
of plays, and in particular the law of α(i, Ii,τ ) conditionally to Wn is the same
for any adversary. Thus, if we note Pnα (respectively Pn−i,α) the law of Wn when
the forecaster plays against the α-adversary (respectively the (−i, α)-adversary),
then one can easily prove that KL(P−i,α,Pi,α) ≤ KL(Pn−i,α,Pnα). Now we use the

chain rule for Kullback-Leibler divergence iteratively to introduce the laws Ptα of
the observed losses Wt up to time t. More precisely, we have,

KL(Pn−i,α,Pnα)

= KL(P1
−i,α,P1

α) +

n∑
t=2

∑
wt−1∈{0,...,m}t−1

Pt−1
−i,α(wt−1)KL(Pt−i,α(.|wt−1),Ptα(.|wt−1))

= KL
(
B∅,B′∅

)
1α(i,Ii,1)=1 +

n∑
t=2

∑
wt−1:α(i,Ii,1)=1

Pt−1
−i,α(wt−1)KL

(
Bwt−1 ,B′wt−1

)
,

where Bwt−1
and B′wt−1

are sums of m Bernoulli distributions with parameters in

{1/2, 1/2− ε} and such that the number of Bernoullis with parameter 1/2 in Bwt−1

is equal to the number of Bernoullis with parameter 1/2 in B′wt−1
plus one. Now

using Lemma 7.3 (see below) we obtain,

KL
(
Bwt−1

,B′wt−1

)
≤ 8 ε2

(1− 4ε2)m
.

In particular this gives:

KL(Pn−i,α,Pnα) ≤ 8 ε2

(1− 4ε2)m
E−i,α

n∑
t=1

1α(i,Ii,t)=1 =
8 ε2n

(1− 4ε2)m
P−i,α(1).

Summing and plugging this into (7.17) we obtain (again thanks to (7.16)), for
ε ≤ 1√

8
,

1

(d/m)m

∑
α∈A

Pi,α(1) ≤ m

d
+ ε

√
8n

d
.

To conclude the proof of (7.13) for deterministic players one needs to plug in this
last equation in (7.15) along with straightforward computations.

Fourth step: Fubini’s Theorem to handle non-deterministic players.

Consider now a randomized player, and let Erand denote the expectation with
respect to the randomization of the player. Then one has (thanks to Fubini’s
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Theorem),

1

(d/m)m

∑
α∈A

E
n∑
t=1

(aTt zt − αT z) = Erand
1

(d/m)m

∑
α∈A

Eα
n∑
t=1

(aTt zt − αT z).

Now remark that if we fix the realization of the forecaster’s randomization then
the results of the previous steps apply and in particular one can lower bound

1
(d/m)m

∑
α∈A Eα

∑n
t=1(aTt zt−αT z) as before (note that α is the optimal action in

expectation against the α-adversary).

Fifth step: Proof for semi-bandit, and bandit with bounded scalar loss.

The proof of (7.12) follows trivially from (7.13), using the same argument than
in Theorem 6.5. On the other hand to prove (7.14) we need to work a little bit
more. First we need to modifiy the α-adversary so that it satisfies the bounded
scalar loss assumption. We do that as follows: at each turn the α-adversary selects
uniformly at random Et ∈ {1, . . . ,m}, and sets to 0 the losses in all games but
the Etht game where it sets the same losses than the original α-adversary described
in the First step above. For this new set of adversaries, one has to do only two
modifications in the above proof. First (7.15) is replaced by:

max
α∈A

Rn ≥
nε

m

m∑
i=1

(
1− 1

(d/m)m

∑
α∈A

Pi,α(1)

)
.

Second Bwt−1
is now a Bernoulli with mean µt ∈

[
1
2 − (m− 1) εm ,

1
2

]
and B′wt−1

is a

Bernoulli with mean µt − ε
m , and thus we have (thanks to Lemma 7.2)

KL
(
Bwt−1 ,B′wt−1

)
≤ 4ε2

(1− 4ε2)m2
.

The proof of (7.14) for deterministic players is then concluded again with straight-
forward computations. �

Lemma 7.2. For any p, q ∈ [0, 1],

2(p− q)2 ≤ KL(Ber(p), Ber(q)) ≤ (p− q)2

q(1− q)
.

Proof. The left hand side inequality is simply Lemma 5.10 (Pinsker’s inequal-
ity) for Bernoulli distributions. The right hand side on the other hand comes from
log x ≤ x− 1 and the following computations:

KL(Ber(p), Ber(q)) = p log

(
p

q

)
+ (1− p) log

(
1− p
1− q

)
≤ p

p− q
q

+ (1− p)q − p
1− q

=
(p− q)2

q(1− q)
.

�

Lemma 7.3. Let ` and n be integers with 1
2 ≤

n
2 ≤ ` ≤ n. Let p, p′, q, p1, . . . , pn

be real numbers in (0, 1) with q ∈ {p, p′}, p1 = · · · = p` = q and p`+1 = · · · = pn.
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Let B (resp. B′) be the sum of n + 1 independent Bernoulli distributions with
parameters p, p1, . . . , pn (resp. p′, p1, . . . , pn). We have

KL(B,B′) ≤ 2(p′ − p)2

(1− p′)(n+ 2)q
.

Proof. Let Z,Z ′, Z1, . . . , Zn be independent Bernoulli distributions with pa-

rameters p, p′, p1, . . . , pn. Define S =
∑`
i=1 Zi, T =

∑n
i=`+1 Zi and V = Z + S.

By slight abuse of notation, merging in the same notation the distribution and the
random variable, we have

KL(B,B′) = KL
(
(Z + S) + T, (Z ′ + S) + T

)
≤ KL

(
(Z + S, T ), (Z ′ + S, T )

)
= KL

(
Z + S,Z ′ + S

)
.

Let sk = P(S = k) for k = −1, 0, . . . , `+ 1. Using the equalities

sk =

(
`

k

)
qk(1−q)`−k =

q

1− q
`− k + 1

k

(
`

k − 1

)
qk−1(1−q)`−k+1 =

q

1− q
`− k + 1

k
sk−1,

which holds for 1 ≤ k ≤ `+ 1, we obtain

KL(Z + S,Z ′ + S) =

`+1∑
k=0

P(V = k) log

(
P(Z + S = k)

P(Z ′ + S = k)

)

=

`+1∑
k=0

P(V = k) log

(
psk−1 + (1− p)sk
p′sk−1 + (1− p′)sk

)

=

`+1∑
k=0

P(V = k) log

(
p 1−q

q k + (1− p)(`− k + 1)

p′ 1−qq k + (1− p′)(`− k + 1)

)
= E log

(
(p− q)V + (1− p)q(`+ 1)

(p′ − q)V + (1− p′)q(`+ 1)

)
.(7.18)

First case: q = p′.
By Jensen’s inequality, using that EV = p′(`+ 1) + p− p′ in this case, we then get

KL(Z + S,Z ′ + S) ≤ log

(
(p− p′)E(V ) + (1− p)p′(`+ 1)

(1− p′)p′(`+ 1)

)
= log

(
(p− p′)2 + (1− p′)p′(`+ 1)

(1− p′)p′(`+ 1)

)
= log

(
1 +

(p− p′)2

(1− p′)p′(`+ 1)

)
≤ (p− p′)2

(1− p′)p′(`+ 1)
.

Second case: q = p.
In this case, V is a binomial distribution with parameters `+ 1 and p. From (7.18),
we have

KL(Z + S,Z ′ + S) ≤ −E log

(
(p′ − p)V + (1− p′)p(`+ 1)

(1− p)p(`+ 1)

)
≤ −E log

(
1 +

(p′ − p)(V − EV )

(1− p)p(`+ 1)

)
.(7.19)

To conclude, we will use the following lemma.
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Lemma 7.4. The following inequality holds for any x ≥ x0 with x0 ∈ (0, 1):

− log(x) ≤ −(x− 1) +
(x− 1)2

2x0
.

Proof. Introduce f(x) = −(x− 1) + (x−1)2

2x0
+ log(x). We have f ′(x) = −1 +

x−1
x0

+ 1
x , and f ′′(x) = 1

x0
− 1

x2 . From f ′(x0) = 0, we get that f ′ is negative on

(x0, 1) and positive on (1,+∞). This leads to f nonnegative on [x0,+∞). �

Finally, from Lemma 7.4 and (7.19), using x0 = 1−p′
1−p , we obtain

KL(Z + S,Z ′ + S) ≤
(

p′ − p
(1− p)p(`+ 1)

)2E[(V − EV )2]

2x0

=

(
p′ − p

(1− p)p(`+ 1)

)2
(`+ 1)p(1− p)2

2(1− p′)

=
(p′ − p)2

2(1− p′)(`+ 1)p
.

�

7.5. Two-points bandit feedback

In this section we consider the general online convex optimization problem
(A is a convex and compact set of full rank, and ` is convex) with the following
modifications:

• The player chooses two points at and bt and suffers the average loss
`(at,zt)+`(bt,zt)

2 .
• The feedback is the bandit feedback for both points, that is the player

observes `(at, zt) and `(bt, zt).

Another interpretation of this scenario is that the adversary can update its move
zt only on odd rounds.

As one can expect, the fact that one observes two points allows for a good
estimation of the gradient information. More precisely, assume that one wants to
play at and to obtain the gradient ∇`(at, zt). Also assume for the moment that
there is an euclidean ball of radius γ around at that is contained in A. Then one

can play the following two perturbated points: ãt = at+γv and b̃t = at−γv, where
v is drawn uniformly at random on Sd−1. Using the feedback information one can
build the following estimate of the gradient:

(7.20) g̃t = d
`(at + γv, zt)− `(at − γv, zt)

2γ
v.

Note that, if ||∇`(a, z)||2 ≤ G, then ||g̃t||2 ≤ dG (in other words the estimate can
not be too big). Moreover the following lemma shows that it is an unbiased estimate
of the gradient of a smoothed version of `.

Lemma 7.5. Let f : Rd → R be a differentiable function,

f̄(x) =
1

V old(B2,d)

∫
B2,d

f(x+ γu)du,
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and σd−1 be the unnormalized spherical measure. Then f̄ is differentiable and:

∇f̄(x) =
d

γσd−1(Sd−1)

∫
Sd−1

f(x+ γv)vdσd−1(v).

Proof. The proof of this result is an easy consequence of the Divergence The-

orem and the fact that
V old(B2,d)
σd−1(Sd−1)

= 1
d . Indeed we have:

∇f̄(x) =
1

V old(B2,d)

∫
B2,d

∇f(x+ γu)du

=
1

V old(B2,d)

∫
Sd−1

1

γ
f(x+ γv)vdσd−1(v)

=
d

γσd−1(Sd−1)

∫
Sd−1

f(x+ γv)vdσd−1(v).

�

Thus, if one defines (for a ∈ A such that the euclidean ball of radius γ around
a is contained in A)

¯̀(a, z) =
1

V old(B2,d)

∫
B2,d

`(a+ γu, z)du,

then E(g̃t|at) = ∇¯̀(at, zt).

Moreover note that bounding the regret with respect to ¯̀ directly gives regret
for `, since |¯̀(a, z)− `(a, z)| ≤ γG (if ||∇`(a, z)||2 ≤ G).

Given those properties, it is now easy to derive a regret bound for OGD with
this unbiased estimate.

Theorem 7.9. Consider a compact, convex, and full rank action set A ⊂
B2,d(R), and a convex and differentiable loss ` with ||∇`(a, z)||2 ≤ G,∀(a, z) ∈ A×
Z. Then the two-points OSMD on A′ = {a ∈ A : B2(a, γ) ⊂ A} with F (x) = 1

2 ||x||
2
2

satisfies

Rn ≤ 4γnG+
R2

2η
+

1

2
ηnd2G2.

In particular with γ ≤ 1
4nG and η = R

dG
√
n

we get

Rn ≤ RGd
√
n+ 1.

Proof. First note that A′ is clearly convex, and since A is of full rank, playing
on A′ instead of A only cost a regret of γnG. Moreover we can bound the regret
with respect to ¯̀ instead of `, which cost a regret of 2γnG. Now we can apply
Theorem 7.1 and we directly obtain the regret bound above. �

Note that now one can play around with this theorem, and basically redo
Chapter 5 under the assumption of two-points bandit feedback.
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7.6. Online convex optimization with bandit feedback

The strategy described in the previous section can be directly applied to the
bandit case. The only difference will be in the norm of the estimate. Indeed in that
case one has:

g̃t =
d

γ
`(at + γv, zt),

and thus ||g̃t||2 ≤ d
γ (assuming that the loss takes values in [−1, 1]). Thus, on the

contrary to what happened with two-points bandit feedback, here taking a small γ
comes at a cost. In particular the regret bound for OGD with this estimate looks
like (up to terms independent of n):

γn+
1

η
+
ηn

γ2
.

Optimizing this bound gives a regret of order n3/4. Of course the fact that we do
not get a

√
n should not be a surprise, since OGD does not use the local norm

idea that was key to obtain good regret in the linear bandit case. However here
this local norm idea can not be applied: indeed in linear bandit the variance of
the estimate blows up only when one approaches the boundary of A, while in the
convex case the variance ’blows’ up everywhere! As a result the n3/4 regret bound
is the best known bound for online convex optimization with bandit feedback. I see
no reason why this bound would be optimal, and I conjecture that

√
n is attainable

in this case too. However it seems that fundamentally new ideas are required to
attain this bound.
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(NIPS), volume 20, pages 345–352, 2008

• N. Cesa-Bianchi and S. Kakade. An optimal algorithm for linear bandits.
arXiv:1110.4322v1, 2011

• K. Ball. An elementary introduction to modern convex geometry. In S. Levy,
editor, Flavors of Geometry, pages 1–58. Cambridge University Press, 1997
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hand the only paper that attains a

√
n regret bound with OSMD is:

• J. Abernethy, E. Hazan, and A. Rakhlin. Competing in the dark: An
efficient algorithm for bandit linear optimization. In Proceedings of the
21st Annual Conference on Learning Theory (COLT), pages 263–274, 2008

They achieve this with F being a self-concordant barrier for A. Unfortunately this
approach yields suboptimal bounds in terms of the dimension. However in some
cases this approach is computationally efficient, while the discretization with Exp2
is not. Note that another useful reference for convex geometry, and in particular
algorithmic convex geometry is [54].

Section 7.5 is based on:

• A. Agarwal, O. Dekel, and L. Xiao. Optimal algorithms for online convex
optimization with multi-point bandit feedback. In Proceedings of the 23rd
Annual Conference on Learning Theory (COLT), 2010

Section 7.6 is based on:

• A. Flaxman, A. Kalai, and B. McMahan. Online convex optimization in
the bandit setting: Gradient descent without a gradient. In In Proceedings
of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 385–394, 2005

Note also that two earlier references for online linear optimization with bandit
feedback are:

• B. Awerbuch and R. Kleinberg. Adaptive routing with end-to-end feed-
back: distributed learning and geometric approaches. In STOC ’04: Pro-
ceedings of the thirty-sixth annual ACM symposium on Theory of comput-
ing, pages 45–53, 2004

• H. McMahan and A. Blum. Online geometric optimization in the bandit
setting against an adaptive adversary. In In Proceedings of the 17th Annual
Conference on Learning Theory (COLT), pages 109–123, 2004

Finally note that SGD goes back:

• H. Robbins and S. Monro. A stochastic approximation method. Annals of
Mathematical Statistics, 22:400–407, 1951

• J. Kiefer and J. Wolfowitz. Stochastic estimation of the maximum of a
regression function. Annals of Mathematical Statistics, 23:462–466, 1952

See [51, 9] for a modern point view on SGD in a standard framework.



CHAPTER 8

Online stochastic optimization

In this section we assume that the sequence z1, . . . , zn is i.i.d from some un-
known probability distribution P over Z. We restrict our attention to the bandit
case, since the full information problem basically reduces to a classical statistical
problem. Note that here the pseudo-regret can be defined as follows (since zt is
independent of at):

Rn = E
n∑
t=1

`(at, zt)−min
a∈A

E
n∑
t=1

`(a, zt)

= E
n∑
t=1

EZ∼P`(at, Z)−min
a∈A

n∑
t=1

EZ∼P`(a, Z).

In other words to minimize the pseudo-regret one should find the action with small-
est expected loss and focus on this one once found. Note that the player faces
an exploration-exploitation dilemna, since he has to choose between exploiting his
knowledge to focus on the action that he believes to be the best, and exploring
further the action set to identify with better precision which action is the best. As
we shall see, the key is basically to not make this choice but do both exploration
and exploitation simultaneously!

Note that, in terms of distribution-free inequalities, one cannot improve the
bounds on Rn proved in the previous chapter. Indeed all lower bounds considered
a stochastic adversary. Here we shall focus on distribution-dependent bounds, that
is bounds on Rn that depend on P. In that case one can propose tremendous
improvements over the results of the previous chapter.

8.1. Optimism in face of uncertainty

Assume that one observed `(a1, z1), . . . , `(at, zt). The optimism in face of un-
certainty corresponds to the following heuristic to choose the next action at+1.
First, using the observed data, one builds a set P of probability distributions which
are ’consistent’ with the data. More precisely, given a set of possible probability
distributions, and a threshold δ, one excludes all P such that:

P(observing `(a1, z1), . . . , `(at, zt)) < 1− δ.

Then the optimism in face of uncertainty says that one should play the optimal
action for the ’best’ environment in P, that is:

at+1 ∈ argmin
a∈A

min
P∈P

EZ∼P`(a, z).

This heuristic is a way to do both exploration and exploitation at the same time.
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8.2. Stochastic multi-armed bandit

The stochastic multi-armed bandit corresponds to the case where A is a finite
set. For historical reasons we consider gains rather than losses in this setting, and
we modify the notation as follows. Let d ≥ 2 be the number of actions (we call
them arms from now on). For i ∈ {1, . . . , d}, let νi be the reward distribution
of arm i and µi its mean. That is when one pulls arm i, one receives a reward
drawn from νi (independently from the past). We also set µ∗ = maxi∈{1,...,d} µi
and i∗ ∈ argmaxi∈{1,...,d} µi. Denote It ∈ {1, . . . , d} the arm played at time t. Then
the pseudo-regret is defined as:

Rn = nµ∗ − E
n∑
t=1

µIt .

Another form of the pseudo-regret shall be useful. Let Ti(s) =
∑s
t=1 1It=i denote

the number of times the player selected arm i on the first s rounds. Let ∆i = µ∗−µi
be the suboptimality parameter of arm i. Then the pseudo-regret can be written
as:

Rn = nµ∗ − E
n∑
t=1

µIt

=

(
d∑
i=1

ETi(n)

)
µ∗ − E

d∑
i=1

Ti(n)µi

=

d∑
i=1

∆iETi(n).

Finally we denote by Xi,s the reward obtained by pulling arm i for the sth time.

8.2.1. Upper Confidence Bounds (UCB). Let ψ : R+ → R be a con-
vex function1. In this section we assume that the reward distributions satisfy the
following conditions: For all λ ≥ 0,

(8.1) logE exp(λ(X − EX)) ≤ ψ(λ) and logE exp(λ((EX)−X)) ≤ ψ(λ).

We shall attack the stochastic multi-armed bandit with the optimism in face of
uncertainty principle. To do so one needs to provide an upper bound estimate on
the mean of each arm at some probability level. Given the assumption (8.1) it is
easy to do so. Let µ̂i,s = 1

s

∑s
t=1Xi,t. Using Markov’s inequality one obtains:

(8.2) P(µi − µ̂i,s > ε) ≤ exp(−sψ∗(ε)).

In other words, with probability at least 1− δ,

µ̂i,s + (ψ∗)
−1

(
log δ−1

s

)
> µi.

Thus we consider the following strategy, called (α,ψ)-UCB (with α > 0): at time
t, select

It ∈ argmax
i∈{1,...,d}

µ̂i,Ti(t−1) + (ψ∗)
−1

(
α log t

Ti(t− 1)

)
1One can easily generalize the discussion to functions ψ defined only on an interval [0, b).
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Theorem 8.1. Assume that the reward distributions satisfy (8.1). Then (α,ψ)-
UCB with α > 2 satisfies:

Rn ≤
∑

i:∆i>0

(
α∆i

ψ∗(∆i/2)
log n+ 1 +

2

α− 2

)
.

For example for bounded random variables in [0, 1], thanks to Hoeffding’s in-

equality one can take ψ(λ) = λ2

8 , which gives ψ∗(ε) = 2ε2, and which in turns gives
the following regret bound:

Rn ≤
∑

i:∆i>0

(
2α

∆i
log n+ 1 +

2

α− 2

)
.

Proof. First note that if It = i, then one the three following equations is true:

µ̂i∗,Ti∗ (t−1) + (ψ∗)
−1

(
α log t

Ti∗(t− 1)

)
≤ µ∗,(8.3)

or

µ̂i,Ti(t−1) > µi + (ψ∗)
−1

(
α log t

Ti(t− 1)

)
,(8.4)

or

Ti(t− 1) <
α log n

ψ∗(∆i/2)
.(8.5)

Indeed, let us assume that the three equations are false, then we have:

µ̂i∗,Ti∗ (t−1) + (ψ∗)
−1

(
α log t

Ti∗(t− 1)

)
> µ∗

= µi + ∆i

≥ µi + 2 (ψ∗)
−1

(
α log t

Ti(t− 1)

)
≥ µ̂i,Ti(t−1) + (ψ∗)

−1

(
α log t

Ti(t− 1)

)
,

which implies in particular that It 6= i. In other words, letting u = d α logn
ψ∗(∆i/2)e, we

proved:

ETi(n) = E
n∑
t=1

1It=i ≤ u+ E
n∑

t=u+1

1
It=i and (8.5) is false

≤ u+ E
n∑

t=u+1

1(8.3) or (8.4) is true

= u+

n∑
t=u+1

P((8.3) is true) + P((8.4) is true).
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Thus it suffices to bound the probability of the events (8.3) and (8.4). Using an
union bound and (8.2) one directly obtains:

P((8.3) is true) ≤ P
(
∃s ∈ {1, . . . , t} : µ̂i∗,s + (ψ∗)

−1

(
α log t

s

)
≤ µ∗

)
≤

t∑
s=1

P
(
µ̂i∗,s + (ψ∗)

−1

(
α log t

s

)
≤ µ∗

)

≤
t∑

s=1

1

tα

=
1

tα−1
.

The same upper bound holds true for (8.4), which concludes the proof up to straight-
forward computations. �

8.2.2. Lower bound. We show here that the result of the previous section is
essentially unimprovable.

Theorem 8.2. Let us consider a strategy such that for any set of Bernoulli
reward distributions, any arm i such that ∆i > 0 and any a > 0, one has ETi(n) =
o(na). Then for any set of Bernoulli reward distributions, the following holds true:

lim inf
n→+∞

Rn
log n

≥
∑

i:∆i>0

∆i

KL(µi, µ∗)
.

Proof. We provide a proof in three steps.

First step: Notations.
Without loss of generality let us assume that arm 1 is optimal and arm 2 is subop-
timal, that is µ2 < µ1 < 1. Let ε > 0. Since x 7→ KL(µ2, x) is continuous one can
find µ′2 ∈ (µ1, 1) such that

(8.6) KL(µ2, µ
′
2) ≤ (1 + ε)KL(µ2, µ1).

We note E′,P′ when we integrate with respect to the modified bandit where the
parameter of arm 2 is replaced by µ′2. We want to compare the behavior of the
forecaster on the initial and modified bandits. In particular we prove that with a
fair probability the forecaster can not distinguish between the two problems. Then
using the fact that we have a good forecaster (by hypothesis in the Theorem) we
know that the algorithm does not make too much mistakes on the modified bandit
where arm 2 is optimal, in other words we have a lower bound on the number
of times the optimal arm is played. This reasoning implies a lower bound on the
number of times arm 2 is played in the initial problem.

To complete this program we introduce a few notations. Recall thatX2,1, . . . , X2,n

is the sequence of random variables obtained while pulling arm 2. For s ∈ {1, . . . , n},
let

K̂Ls =

s∑
t=1

log

(
µ2X2,t + (1− µ2)(1−X2,t)

µ′2X2,t + (1− µ′2)(1−X2,t)

)
.

In particular note that with respect to the initial bandit, K̂LT2(n) is the (non re-
normalized) empirical estimation of KL(µ2, µ

′
2) at time n since in that case (Xs) is
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i.i.d from a Bernoulli of parameter µ2. Another important property is that for any
event A one has:

(8.7) P′(A) = E 1A exp
(
−K̂LT2(n)

)
.

Now to control the link between the behavior of the forecaster on the initial
and modified bandits we introduce the event:

(8.8) Cn =

{
T2(n) <

1− ε
KL(µ2, µ′2)

log(n) and K̂LT2(n) ≤ (1− ε/2) log(n)

}
.

Second step: P(Cn) = o(1).

By (8.7) and (8.8) one has:

P′(Cn) = E 1Cn exp
(
−K̂LT2(n)

)
≥ exp (−(1− ε/2) log(n))P(Cn),

which implies by (8.8) and Markov’s inequality:

P(Cn) ≤ n(1−ε/2)P′(Cn)

≤ n(1−ε/2)P′
(
T2(n) <

1− ε
KL(µ2, µ′2)

log(n)

)
≤ n(1−ε/2) E′(n− T2(n))

n− 1−ε
KL(µ2,µ′2) log(n)

.

Now remark that in the modified bandit arm 2 is the unique optimal arm, thus
the assumption that for any bandit, any suboptimal arm i, any a > 0, one has
ETi(n) = o(na) implies that

P(Cn) ≤ n(1−ε/2) E′(n− T2(n))

n− 1−ε
KL(µ2,µ′2) log(n)

= o(1).

Third step: P
(
T2(n) < 1−ε

KL(µ2,µ′2) log(n)
)

= o(1).

Remark that

P(Cn)

≥ P

T2(n) <
1− ε

KL(µ2, µ′2)
log(n) and max

1≤s≤ 1−ε
KL(µ2,µ

′
2)

log(n)
K̂Ls ≤ (1− ε/2) log(n)


= P

(
T2(n) <

1− ε
KL(µ2, µ′2)

log(n)

and
KL(µ2, µ

′
2)

(1− ε) log(n)
max

1≤s≤ (1−ε) log(n)

KL(µ2,µ
′
2)

K̂Ls ≤
1− ε/2
1− ε

KL(µ2, µ
′
2)

 .(8.9)
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Now using Lemma 8.1 since KL(µ2, µ
′
2) > 0 and the fact that 1−ε/2

1−ε > 1 we
deduce that

lim
n→+∞

P

 KL(µ2, µ
′
2)

(1− ε) log(n)
max

1≤s≤ (1−ε) log(n)

KL(µ2,µ
′
2)

K̂Ls ≤
1− ε/2
1− ε

KL(µ2, µ
′
2)

 = 1,

and thus by the result of the second step and (8.9):

P
(
T2(n) <

1− ε
KL(µ2, µ′2)

log(n)

)
= o(1).

Now using (8.6) we obtain:

ET2(n) ≥ (1 + o(1))
1− ε
1 + ε

log(n)

KL(µ2, µ1)

which concludes the proof. �

Lemma 8.1 (A Maximal Law of Large Numbers). Let X1, X2, . . . be a sequence
of independent real random variables with positive mean and satisfying almost surely

(8.10) lim
n→+∞

1

n

n∑
t=1

Xt = µ.

Then we have almost surely:

(8.11) lim
n→+∞

1

n
max

1≤s≤n

s∑
t=1

Xt = µ.

Proof. Let Sn =
∑n
t=1Xt and Mn = max1≤i≤n Si. We need to prove that

limn→+∞
Mn

n = µ. First of all we clearly have almost surely:

lim inf
n→+∞

Mn

n
≥ lim inf

n→+∞

Sn
n

= µ.

Now we need to upper bound the lim sup. Let ϕ : N→ N be an increasing function
such that ϕ(n) is the largest integer smaller than n satisfying Mn = Sϕ(n). Thus

Mn

n
≤
Sϕ(n)

ϕ(n)
.

If ϕ(n)→∞ then one can conclude from (8.10) that

lim sup
n→+∞

Sϕ(n)

ϕ(n)
≤ µ.

On the other hand if ϕ(n) ≤ N ∀n then for any T > 0 we have
∑T
t=N+1Xt < 0

and this event has probability zero since P(Xt < 0) < 1 (otherwise µ would not be
positive). �
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CHAPTER 9

Open Problems

A summary of the results proved in these lecture notes can be found in Table
1. They suggest a list of very precise open problems, which may eventually lead to
a better understanding of the intrinsic trade-offs involved between the geometric
structure of the action sets A and Z (and their interplay), the amount of feedback
received by the player, the rate of growth of the minimax regret, and the compu-
tational resources available.

Recall that the combinatorial setting corresponds to Z = [0, 1]d andA ⊂ {0, 1}d
with ||a||1 = m,∀a ∈ A. The dual setting with some norm || · || corresponds to
supa,z ||∇`(a, z)||∗ ≤ G and A such that supa ||a|| ≤ R. Finally the bounded
assumption corresponds to supa,z |`(a, z)| ≤ 1.

Open Problem 1. What is the minimax rate for the regret with a bounded
convex loss (in the full information setting)? Continuous Exp gives an upper bound
of order

√
dn log n. On the other hand one can easily prove a lower bound of order√

dn (using A = {−1, 1}d and a linear loss, see the proof technique of Theorem 7.8,
or [19]).

Open Problem 2. What is the minimax rate for the regret with a subdifferen-
tiable loss, in a dual setting with || · ||2 (say A = B2,d), and under two-points bandit
feedback? The strategy described in Section 7.5 gives an upper bound of order d

√
n.

It is not clear if the correct order of magnitude is
√
dn or d

√
n.

Open Problem 3. What is the minimax rate for the regret with a linear loss,
in a combinatorial setting, and under bandit feedback? The gap between the upper
and lower bound is of order

√
m.

Open Problem 4. What is the minimax rate for the regret with a bounded
linear loss, under bandit feedback? The gap between the upper and lower bound is
of order

√
log n.

Open Problem 5. What is the minimax rate for the regret with a linear loss,
in a dual setting with || · ||2 (say A = B2,d), and under bandit feedback? The gap
between the upper and lower bound is of order

√
log n. What about the rate for

other dual settings (say || · ||p for example)?

Open Problem 6. What is the minimax rate for the regret with a bounded
subdifferentiable loss, in a dual setting with || · ||2 (say A = B2,d), and under bandit

feedback? The gap between the upper and lower bound is of order n1/4.

Open Problem 7. In the combinatorial setting with full information, is it
possible to attain the optimal regret with only a linear (in d) number of calls to an
oracle for the offline problem (i.e., an oracle minimizing linear functions on A).
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The FPL strategy satisfies the constraint of number of calls, but attains a suboptimal
regret compared to OMD with the negative entropy.

Open Problem 8. Is it possible to design a polynomial time strategy (in d)
with optimal regret under the assumption of a bounded linear loss?
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Lower bound Upper bound Conjecture

bounded convex,
√
n log d

√
n log d −

expert regret

σ-exp concave, − log d
σ −

expert regret

bounded convex
√
dn

√
dn log n −

σ-exp concave − d logn
σ −

subdifferentiable, − RG
√

n
p−1 −

dual setting with || · ||p, p ∈ [1, 2]

subdifferentiable, G
√
n log d G

√
n log d −

dual setting with || · ||1 on the simplex

α-strongly convex, − RG logn
α −

dual setting with || · ||2

combinatorial setting m
√
n log d

m m
√
n log d

m −

combinatorial setting,
√
mdn

√
mdn −

semi-bandit

subdifferentiable,
dual setting with || · ||2, − RGd

√
n −

two-points bandit

bounded linear, d
√
n d

√
n log n −

bandit

combinatorial setting, m
√
dn m3/2

√
dn log d

m m
√
dn

bandit

linear,

dual setting with || · ||2 on the Euclidean ball, − G
√
dn log n G

√
dn

bandit

bounded subdifferentiable,
dual setting with || · ||2,

√
n n3/4

√
n

bandit (dependencies other than n omitted)

Table 1. Summary of the results proved in these lecture notes.
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