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HOW THE INITIALIZATION AFFECTS THE STABILITY OF THE k-MEANS
ALGORITHM ∗
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Abstract. We investigate the role of the initialization for the stability of the k-means clustering
algorithm. As opposed to other papers, we consider the actual k-means algorithm (also known as Lloyd
algorithm). In particular we leverage on the property that this algorithm can get stuck in local optima
of the k-means objective function. We are interested in the actual clustering, not only in the costs of
the solution. We analyze when different initializations lead to the same local optimum, and when they
lead to different local optima. This enables us to prove that it is reasonable to select the number of
clusters based on stability scores.
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1. Introduction

Stability is a popular tool for model selection in clustering, in particular to select the number k of clusters.
The general idea is that the best parameter k for a given data set is the one which leads to the “most stable”
clustering results. While model selection based on clustering stability is widely used in practice, its behavior is
still not well-understood from a theoretical point of view. A recent line of papers discusses clustering stability
with respect to the k-means criterion in an idealized setting [2–4, 11–13]. It is assumed that one has access to
an ideal algorithm which can globally optimize the k-means criterion. For this perfect algorithm, results on
stability are proved in the limit of the sample size n tending to infinity. However, none of these results applies
to the k-means algorithm (also known as Lloyd algorithm) as used in practice: they do not take into account
the problem of getting stuck in local optima. In our current paper we try to overcome this shortcoming. We
study the stability of the actual k-means algorithm rather than the idealized one.

Our analysis theoretically confirms the following intuition. Assume the data set has K well-separated clusters,
and assume that k-means is initialized with K ′ ≥ K initial centers. We conjecture that when there is at least
one initial center in each of the underlying clusters, then the initial centers tend to stay in the clusters they had
been placed in.

Consequently, the final clustering result is essentially determined by the number of initial centers in each of
the true clusters. In this paper we are primarily interested in this combinatorial arrangement of centers within
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a. b.

Figure 1. Different initial configurations and the corresponding outcomes of the k-means
algorithm. (a) The two boxes in the top row depict a data set with three clusters and four
initial centers. Both boxes show different realizations of the same initial configuration. As can
be seen in the bottom, both initializations lead to the same k-means clustering. (b) Here the
initial configuration is different from the one in (a), which leads to a different k-means clustering.

clusters, which we call a configuration. More precisely a configuration corresponds to a list of integers, one for
each true cluster, which represent the number of centers within this cluster. We call initial configuration the
configuration resulting from the initialization of the k-means algorithm, see Figure 1 for an illustration. Using
the observation above, if one uses an initialization scheme which has the desired property of placing at least
one center in each cluster with high probability, then the following will hold: if K ′ = K, we have one center
per cluster, with high probability. The configuration will remain the same during the course of the algorithm.
If K ′ > K, different configurations can occur. Since different configurations lead to different clusterings we
obtain significantly different final clusterings depending on the random initialization, in other words we observe
instability (w.r.t initialization).

Note that our argument does not imply stability or instability for K ′ < K. As we have less initial centers
than clusters, for any initialization scheme there will be some clusters with no initial center. In this setting
centers do move between clusters, and this cannot be analyzed without looking at the actual positions of the
centers. Actually, as can be seen from examples, in this case one can have either stability or instability.

The main point of our paper is that the arguments above can explain why the parameter k selected by
stability based model selection is often the true number of clusters, under the assumption that the data set
consists of well separated clusters and one uses an appropriate initialization scheme.

Even though the arguments above are very intuitive, even individual parts of our conjecture turn out to
be surprisingly hard. In this paper we only go a first step towards a complete proof, considering mixtures of
Gaussians in one dimension. For a mixture of two Gaussians (K = 2) we prove that the k-means algorithm
is stable for K ′ = 2 and unstable for K ′ = 3. The proof technique is based on our configuration arguments
outlined above. We also provide some preliminary results to study the general case, that is when the data space
is R

d and we do not make any parametric assumption on the probability distribution. Then we have a closer
look at initialization schemes for k-means, when K ′ ≥ K. Is there an initialization scheme that will place at
least one center in each true cluster w.h.p? Clearly, the naive method of sampling K ′ centers from the data set
does not satisfy this property except for very small K. We study a standard but not naive initialization scheme
and prove that it has the desirable property we were looking for.

Of course there exist numerous other papers which study theoretical properties of the actual k-means algo-
rithm. However, these papers are usually concerned with the value of the k-means objective function at the final
solution, not with the position of the final centers. As far as we know, our paper is the first one which analyzes
the “regions of attractions” of the different local optima of the actual k-means algorithm and derives results on
the stability of the k-means clustering itself.
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2. Notation and assumptions

In the following we assume that we are given a set of n data points X1, . . . , Xn ∈ R
d which have been

drawn i.i.d. according to some underlying distribution P. For a center vector c = (c1, . . . , cK′) with ci ∈ R
d we

denote the cluster induced by center ck with Ck(c). The number of points in this cluster is denoted Nk(c). The
clustering algorithm we study in this paper is the standard k-means algorithm. We denote the initial centers by
c
〈0〉
1 , . . . , c

〈0〉
K′ with c

〈0〉
i ∈ R

d, and the centers after step t of the algorithm as c
〈t〉
1 , . . . , c

〈t〉
K′ . By K we denote the

true number of clusters (which will be clear from the context), by K ′ the number of clusters constructed by the
k-means algorithm. It attempts to minimize the k-means objective function

Wn : R
dK′ → R, Wn(c1, . . . , cK′) =

1
2

n∑
i=1

min
k=1,..,K′

||ck − Xi||2.

We now restate the k-means algorithm:
Input: X1, . . . , Xn ∈ R

d, K ′ ∈ N

Initialize the centers c
〈0〉
1 , . . . , c

〈0〉
K′ ∈ R

d

Repeat until convergence:
1. Assign data points to closest centers.
2. Re-adjust cluster means:

c
〈t+1〉
k =

1
Nk(c〈t〉)

∑
i: Xi∈Ck(c〈t〉)k

Xi. (2.1)

Output: c = (c〈final〉
1 , . . . , c

〈final〉
K′ ).

Traditionally, the instability of a clustering algorithm is defined as the mean (with respect to the random
sampling of data points) minimal matching distance between two clusterings obtained on two different set of
data points. For the actual k-means algorithm, a second random process is the random initialization (which
has not been taken into account in previous literature). Here we additionally have to take the expectation over
the random initialization when computing the stability of an algorithm. In this paper we will derive qualitative
rather than quantitative results on stability, thus we omit more detailed formulas.

In the following we restrict our attention to the simple setting where the underlying distribution is a mixture
of Gaussians on R and we have access to an infinite amount of data from P. In particular, instead of estimating
means empirically when calculating the new centers of a k-means step we assume access to the true means. In
this case, the update step of the k-means algorithm can be written as

c
〈t+1〉
k =

∫
Ck(c〈t〉) xf(x)dx∫
Ck(c〈t〉) f(x)dx

where f is the density of the probability distribution P. Results in the finite data case can be derived by
the help of concentrations inequalities. However, as this introduces heavy notation and our focus lies on the
random initialization rather than the random drawing of data points we skip the details. To further set up
notation we denote ϕμ,σ the pdf of a Gaussian distribution with mean μ and variance σ. We also denote
f(x) =

∑K
k=1 wkϕμk,σ where K is the number of Gaussians, the weights wk are positive and sum to one, the

means μ1:K = (μ1, . . . , μK) are ordered, μ1 ≤ . . . ≤ μK . The minimum separation between two Gaussians is
denoted by Δ = mink(μk+1 − μk). For the standard normal distribution we denote the pdf as ϕ and the cdf
as Φ.

3. The level sets approach

In this section we want to prove that if we run the k-means algorithm with K ′ = 2 and K ′ = 3 on a mixture
of two Gaussians, then the resulting clustering depends exclusively on the initial configuration. More precisely
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if we initialize the algorithm such that each cluster gets at least one center and the initial centers are “close
enough” to the true cluster means, then during the course of the algorithm the initial centers do not leave the
cluster they had been placed in. This implies stability for K ′ = 2 since there is only one possible configuration
satisfying this constraint. On the other hand for K ′ = 3 we have two possible configurations, and thus instability
will occur.

The following function plays an important role in our analysis:

H : R
2 → R, H(x, y) = xΦ(−x + y) − ϕ(−x + y).

Straightforward computations show that for any μ, σ, α and h one has
∫ h

−∞
(x − μ + α)ϕμ,σ(x)dx = σH

(
α

σ
,
h + α − μ

σ

)
· (3.1)

We describe necessary and sufficient conditions to obtain stability results for particular “regions” in terms of
the level sets of H .

3.1. Stability in the case of two initial centers

We consider the square Sa = [μ1 − a, μ1 + a]× [μ2− a, μ2 + a] in R
2. The region Sa is called a stable region if

c〈0〉 ∈ Sa ⇒ c〈1〉 ∈ Sa. (3.2)

Proposition 3.1 (stable region for K ′ = 2). Equation (3.2) is true if and only if the following four inequalities
are satisfied:

• w1H

(
a

σ
,

Δ

2σ

)
+ w2H

(
a + Δ

σ
,

Δ

2σ

)
≥ 0 (3.3)

• w1H

(
− a

σ
,

Δ

2σ

)
+ w2H

(−a + Δ

σ
,

Δ

2σ

)
≤ 0 (3.4)

• w1H

(
a − Δ

σ
,− Δ

2σ

)
+ w2H

(
a

σ
,

Δ

2σ

)
≥ 0 (3.5)

• w1H

(−a − Δ

σ
,− Δ

2σ

)
+ w2H

(
− a

σ
,− Δ

2σ

)
≤ 0. (3.6)

Proof. Similar to the Proof of Proposition 3.3, see below. �

This proposition gives necessary and sufficient conditions for the stability of k-means in the case K ′ = 2. In
the following corollary we show an example of the kind of result we can derive from Proposition 3.1. Note that
the parameters a and Δ only appear relative to σ. This allows us to consider an arbitrary σ.

Corollary 3.2 (stability for K ′ = 2). Assume that min(w1, w2) = 0.2 and Δ = 7σ. Assume that we have an
initialization scheme satisfying:

• with probability at least 1 − δ we have one initial center within 2.5σ of μ1 and one within 2.5σ of μ2.

Then k-means is stable in the sense that with probability at least 1− δ it converges to a solution with one center
within 2.5σ of μ1 and one within 2.5σ of μ2.

Proof. We simply check numerically that for a = 2.5σ, Δ = 7σ and w1 = 0.2 (we also check w2 = 0.2)
equations (3.3)–(3.6) are true. Then by Proposition 3.1 we know that Sa is a stable region which implies the
result. �
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3.2. Instability in the case of 3 centers

The case of 3 centers gets more intricate. Consider the prism Ta,b,ε and its symmetric version sym(Ta,b,ε)
in R

3:

Ta,b,ε = {c ∈ R
3 : c1 ≤ c2 ≤ c3, c ∈ [μ1 − a, μ1 + a − ε] × [μ1 − a + ε, μ1 + a] × [μ2 − b, μ2 + b]}

sym(Ta,b,ε) = {c ∈ R
3 : c1 ≤ c2 ≤ c3, c ∈ [μ1 − b, μ1 + b] × [μ2 − a, μ2 + a − ε] × [μ2 − a + ε, μ2 + a]}.

If we have an initialization scheme such that each cluster gets at least one center and the initial centers are
close enough to the true cluster means, then we initialize either in Ta,b,ε or sym(Ta,b,ε). Thus, if these regions
are stable in the following sense:

c〈0〉 ∈ Ta,b,ε ⇒ c〈1〉 ∈ Ta,b,ε (3.7)

then the global k-means algorithm will be unstable, leading either to a clustering in Ta,b,ε or sym(Ta,b,ε).
Expressed in the terms used in the introduction, the algorithm will be initialized with different configurations
and thus be unstable.

Proposition 3.3 (stable region for K ′ = 3). Equation (3.7) is true if and only if all the following inequalities
are satisfied:

•w1H
( a

σ
,

ε

2σ

)
+ w2H

(
a + Δ

σ
,

ε

2σ

)
≥ 0 (3.8)

•w1H

(−a + ε

σ
,

ε

2σ

)
+ w2H

(−a + Δ + ε

σ
,

ε

2σ

)
≤ 0 (3.9)

•w1H

(
a − ε

σ
,
a − b + Δ − ε

2σ

)
+ w2H

(
a − ε + Δ

σ
,
a − b + Δ − ε

2σ

)

≥ w1H

(
a − ε

σ
,− ε

2σ

)
+ w2H

(
a − ε + Δ

σ
,− ε

2σ

)
(3.10)

•w1H

(
− a

σ
,
b − a + Δ

2σ

)
+ w2H

(−a + Δ

σ
,
b − a + Δ

2σ

)
≤ w1H

(
− a

σ
,− ε

2σ

)
+ w2H

(−a + Δ

σ
,− ε

2σ

)
(3.11)

•w1H

(
b − Δ

σ
,
b − a − Δ + ε

2σ

)
+ w2H

(
b − Δ

σ
,
b − a − Δ + ε

2σ

)
≤ b/σ − w1Δ/σ (3.12)

•w1H

(−b − Δ

σ
,
a − b − Δ

2σ

)
+ w2H

(
− b

σ
,
a − b − Δ

2σ

)
≥ −b/σ − w1Δ/σ. (3.13)

Proof. Sketch

Let c〈0〉 ∈ Ta,b,ε. Note that the k-means algorithm in one dimension does not change the orders of centers,
hence c

〈1〉
1 ≤ c

〈1〉
2 ≤ c

〈1〉
3 . By the definition of Ta,b,ε, to prove that after the first step of k-means the centers c〈1〉

are still in Ta,b,ε we have to check six constraints. Due to space constraints, we only show how to prove that the
first constraint c

〈1〉
1 ≥ μ1 − a is equivalent to equation (3.8). The other conditions can be treated similarly.

The update step of the k-means algorithm on the underlying distribution readjusts the centers to the actual
cluster means:

c
〈1〉
1 =

1
∫ c

〈0〉
1 +c

〈0〉
2

2
−∞ f(x)

∫ c
〈0〉
1 +c

〈0〉
2

2

−∞
xf(x).
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Thus, c
〈1〉
1 ≥ μ1 − a is equivalent to

∫ c
〈0〉
1 +c

〈0〉
2

2

−∞
(x − μ1 + a)f(x) ≥ 0.

Moreover, the function h �→ ∫ h

−∞(x − μ1 + a)f(x) is nondecreasing for h ∈ [μ1 − a, +∞). Since c〈0〉 ∈ Ta,b,ε we

know that (c〈0〉1 + c
〈0〉
2 )/2 ≥ μ1 − a + ε/2 and thus the statement ∀c〈0〉 ∈ Ta,b,ε, c

1
1 ≥ μ1 − a is equivalent to

∫ μ1−a+ε/2

−∞
(x − μ1 + a)f(x) ≥ 0.

We can now apply equation (3.1) with the following decomposition to get equation (3.8):

∫ μ1−a+ε/2

−∞
(x − μ1 + a)f(x) = w1

∫ μ1−a+ε/2

−∞
(x − μ1 + a)ϕμ1,σ + w2

∫ μ1−a+ε/2

−∞
(x − μ2 + Δ + a)ϕμ2,σ. �

A simple symmetry argument allows us to treat the stability of the symmetric prism.

Proposition 3.4. If Ta,b,ε is stable for the pdf f(x) = w1ϕμ1,σ + w2ϕμ2,σ and f̃(x) = w2ϕμ1,σ + w1ϕμ2,σ, then
the same holds for sym(Ta,b,ε).

Proof. The k-means algorithm is invariant with respect to translation of the real axis as well as to changes in
its orientation. Hence if Ta,b,ε is stable under f (resp. f̃), so is sym(Ta,b,ε) under f̃(x) = w2ϕμ1,σ + w1ϕμ2,σ

(resp. f). �

Corollary 3.5 (instability for K ′ = 3). Assume that min(w1, w2) = 0.2 and Δ = 14.5σ. Assume that we have
an initialization scheme satisfying:

• with probability at least (1− δ)/2 we have 2 initial centers within 2.5σ of μ1 and 1 initial center within 2.5σ
of μ2;

• with probability at least (1− δ)/2 we have 1 initial centers within 2.5σ of μ1 and 2 initial centers within 2.5σ
of μ2.

Then k-means is unstable: with probability (1 − δ)/2 it will converge to a solution with two centers within 3.5σ
of μ1 and with probability (1 − δ)/2 to a solution with two centers within 3.5σ of μ2.

Proof. We simply check numerically that for a = 3.5σ, b = 2.5σ, ε = σ, Δ = 14.5σ and w1 = 0.2 (we also check
w2 = 0.2) equations (3.8)–(3.13) are true. Then by Propositions 3.3 and 3.4 we know that T3.5σ,2.5σ,σ and its
symmetric sym(T3.5σ,2.5σ,σ) are stable regions which implies the result. �

4. Towards more general results: the geometryof the solution space

of k-means

In the section above we proved by a level set approach that in a very simple setting, if we initialize the
k-means algorithm “close enough” to the true cluster centers, then the initial centers do not move between
clusters. However we would like to obtain this result in a more general setting. We believe that to achieve this
goal in a systematic way one has to understand the structure of the solution space of k-means. We identify the
solution space with the space R

dK′
by representing a set of K ′ centers c1, . . . , cK′ ∈ R

d as a point c in the space
R

dK′
. Our goal in this section is to understand the “shape” of the k-means objective function on this space.

Secondly, we want to understand how the k-means algorithm operates on this space. That is, what can we say
about the “trajectory” of the k-means algorithm from the initial point to the final solution? For simplicity, we
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state some of the results in this section only for the case where the data space is one dimensional. They also
hold in R

d, but are more nasty to write up.
First of all, we want to compute the derivatives of Wn with respect to the individual centers. The result can

also be found in the literature, see for example Lemma 4.10 in [7]. For the convenience of the reader we also
present here the simple proof of this result.

Proposition 4.1 (derivatives of k-means). Given a finite data set X1, . . . , Xn ∈ R. For k, l ∈ {1, . . . , K ′} and
i ∈ {1, . . . , n} consider the hyperplanes in R

K′
defined by

Hk,l,i := {c ∈ R
K′

: Xi = (ck + cl)/2}, Hk,l = {c ∈ R
K′

: ck = cl}.

Define the set H := ∪K′
k,l=1 (Hk,l ∪ ∪n

i=1Hk,l,i). Then we have:

1. Wn is differentiable on R
K′\H with partial derivatives

∂Wn(c)
∂ck

=
∑

i: Xi∈Ck

(ck − Xi).

2. The second partial derivatives of Wn on R
K′\H are

∂Wn(c)
∂ck∂cl

= 0 and
∂Wn(c)
∂ck∂ck

= Nk. (4.1)

3. The third derivatives of Wn on R
K′\H all vanish.

Proof. First of all, note that the sets Hk,l,i ∪Hk,l contain the center vectors for which there exists a data point
Xi which lies on the boundary of two centers ck and cl. Now let us look at the first derivative. We compute it
by foot:

∂Wn(c)
∂ck

= lim
h→0

1
h

(Wn(c1, . . . , cK) − Wn(c1, . . . , ck + h, . . . , cK)).

When c �∈ H we know that no data point lies on the boundary between two cluster centers. Thus, if h is small
enough, the assignment of data points to cluster centers does not change if we replace ck by ck + h. With this
property, the expression above is trivial to compute and yields the first derivative, the other derivatives follow
similarly. �

A straightforward consequence is as follows:

Proposition 4.2 (k-means does Newton iterations). The update step of re-adjusting the clustering mean in the
k-means algorithms corresponds exactly to a step of a Newton optimization.

Proof. This proposition follows directly from Proposition 4.1, the definition of the Newton iteration on Wn and
the definition of the k-means update step. This fact has also been stated (less rigorously and without proof)
in [5]. �

Together, the two propositions show an interesting picture. We have seen in Proposition 4.1 that the k-means
objective function Wn is differentiable on R

K′\H . This means that the space R
K′

is separated into many cells with
hyperplane boundaries Hk,l,i. By construction, the cells are convex (as they are intersections of half-spaces). Our
finding means that each data set X1, . . . , Xn induces a partitioning of this solution space into convex cells. To
avoid confusion, at this point we would like to stress again that we are not looking at a fixed clustering solution
on the data space (which can be described by cells with hyperplane boundaries, too), but at the space of all
center vectors c. It is easy to see that all centers c within one cell correspond to exactly one clustering of the data
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points (i.e., one specific partition of the data into K ′ subsets). As it is well known that the k-means algorithm
never visits a clustering twice, we can conclude that each cell is visited at most once by the algorithm.Within
each cell, Wn is quadratic (as the third derivatives vanish). Moreover, we know that k-means behaves as the
Newton iteration. On a quadratic function, the Newton optimization jumps in one step to the minimum of
the function. This means that if k-means enters a cell that contains a local optimum of the k-means objective
function, then the next step of k-means jumps to this local optimum and stops.

Now let us look more closely at the trajectories of the k-means algorithm. [15] inspired us to derive the
following property.

Proposition 4.3 (trajectories of k-means). Let c〈t〉 and c〈t+1〉 be two consecutive solutions visited by the
k-means algorithm. Consider the line connecting those two solutions in R

K′
, and let cα = (1 − α)c〈t〉 + αc〈t+1〉

be a point on this line (for some α ∈ [0, 1]). Then Wn(cα) ≤ Wn(c〈t〉).

Proof. The following inequalities hold true:

Wn(cα) =
1
2

K∑
k=1

∑
i∈Ck(cα)

||Xi − cα
k ||2

≤ 1
2

K∑
k=1

∑
i∈Ck(ct)

||Xi − cα
k ||2

≤ 1
2

K∑
k=1

∑
i∈Ck(ct)

α||Xi − c
〈t〉
k ||2 + (1 − α)||Xi − c

〈t+1〉
k ||2

≤ αWn(c〈t〉) + (1 − α)Wn(c〈t〉) = Wn(c〈t〉).

For the first and third inequality we used the fact that assigning points in Ck(c) to the center ck is the best
thing to do to minimize Wn. For the second inequality we used that x → ||x||2 is convex. �

We believe that the properties of the k-means objective function and the algorithm are the key to prove
more general stability results. However, there is still an important piece missing, as we are going to explain
now. Since k-means performs Newton iterations on Wn, one could expect to get information on the trajectories
in the configuration space by using a Taylor expansion of Wn. However, as we have seen above, each step of
the k-means algorithm crosses one of the hyperplanes Hk,l,i on which Wn is non-differentiable. Hence, a direct
Taylor expansion approach on Wn cannot work. On the other hand, surprisingly one can prove that the limit
objective function W := lim 1

nWn is almost surely a continuously differentiable function on R
K′

(we omit the
proof in this paper). Thus one may hope that one could first study the behavior of the algorithm for W , and
then apply concentration inequalities to carry over the results to Wn. Unfortunately, here we face another
problem: one can prove that in the limit case, a step of the k-means algorithm is not a Newton iteration on W .

Proposition 4.3 directly evokes a scheme to design stable regions. Assume that we can find two regions
A ⊂ B ⊂ R

K′
of full rank (i.e., with non-empty interior) and such that

max
x∈∂A

Wn(x) ≤ min
x∈∂B

Wn(x). (4.2)

Then, if we initialize in A we know that we will converge to a configuration in B. This approach sounds very
promising. However, we found that it was impossible to satisfy both equation (4.2) and the constraint that A
has to be “big enough” so that we initialize in A with high probability.
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Algorithm Pruned MinDiam

Input: wmin, number of centers K′

1. Initialize with L random points c
〈0〉
1:L, L computed by (5.4).

2. Run one step of k-means, that is:

(a) to each center c
〈0〉
j assign region C0

j , j = 1 : L;

(b) calculate c
〈1〉
1:L as the centers of mass of regions C0

1:L.

3. Remove all centers c
〈1〉
j for which P [C1

j ] ≤ p0, where p0 is given by (5.4). We are left with c
〈1〉
j′ , j′ = 1 : L′.

4. Choose K′ of the remaining centers by the MinDiam heuristic:
(a) select one center at random;
(b) repeat until K′ centroids are selected:

select the centroid c
〈1〉
q that maximizes the minimum distance to the already selected centroids.

Output: the K′ selected centroids c
〈1〉
k , k = 1 : K′.

Figure 2. The Pruned MinDiam initialization.

Finally, we would like to elaborate on a few more complications towards more general results:
• On a high level, we want to prove that if K ′ is slightly larger than the true K, then k-means is unstable.

On the other hand, if K ′ gets close to the number n of data points, we trivially have stability again. Hence,
there is some kind of “turning point” where the algorithm is most unstable. It will be quite a challenge to
work out how to determine this turning point.

• Moreover, even if we have so many data points that the above problem is unlikely to occur, our analysis
breaks down if K ′ gets too large. The reason is that if K ′ is much bigger than K, then we cannot guarantee
any more that initial centers will be in stable regions. Just the opposite will happen: at some point we will
have outliers as initial centers, and then the behavior of the algorithm becomes rather unpredictable.

• Finally, consider the case of K ′ < K. As we have already mentioned in the introduction, in this case it is
not necessarily the case that different initial configurations lead to different clusterings. Hence, a general
statement on (in)stability is not possible in this case. This also means that the tempting conjecture “the
true K has minimal stability” is not necessarily true.

5. An initialization algorithm and its analysis

We have seen that one can prove results on clustering stability for k-means if we use a “good” initialization
scheme which tends to place initial centers in different Gaussians. We now show that an established initialization
algorithm, the Pruned MinDiam initialization described in Figure 2 has this property, i.e. it has the effect
of placing the initial centroids in disjoint, bounded neighborhoods of the means μ1:K . This often rediscovered
algorithm is credited to [8]. In [6] it was analyzed it in the context of the EM algorithm. Later [14] used it in
experimental evaluations of EM, and it was found to have a significant advantage w.r.t more naive initialization
methods in some cases. While this and other initializations have been extensively studied in conjunction with
EM, we are not aware of any studies of Pruned MinDiam for k-means.

We make three necessary conceptual assumptions. Firstly to ensure that K is well-defined we assume that
the mixture weights are bounded below by a known weight wmin.

Assumption 5.1. wk ≥ wmin for all k.

We also require to know a lower bound Δ and an upper bound Δmax on the separation between two Gaussians,
and we assume that these separations are “sufficiently large”. In addition, later we shall make several technical
assumptions related to a parameter τ used in the proofs, which also amount to conditions on the separation.
These assumptions shall be made precise later.
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Theorem 5.2 (Pruned MinDiam initialization). Let f =
∑K

1 wkϕμk,1 be a mixture of K Gaussians with
centers μ1:K , μk ≤ μk+1, and unit variance. Let τ ∈ (0, 0.5), δmiss > 0, δimpure defined in Proposition 5.7. If we
run Algorithm Pruned MinDiam with any 2 ≤ K ′ ≤ 1/wmin, then, subject to Assumptions 5.1–5.13 (specified
later), with probability 1− 2δmiss− δimpure over the initialization there exist K disjoint intervals Ãk, specified in
Section 5.4, one for each true mean μk, so that all K ′ centers c

〈1〉
k′ are contained in

⋃
k Ãk and

if K ′ = K, each Ãk will contain exactly one center c
〈1〉
k′ , (5.1)

if K ′ < K, each Ãk will contain at most one center c
〈1〉
k′ , (5.2)

if K ′ > K, each Ãk will contain at least one center c
〈1〉
k′ . (5.3)

The idea to prove this result is to show that the following statements hold with high probability. By selecting L
preliminary centers in step 1 of Pruned MinDiam, each of the Gaussians obtains at least one center (Sect. 5.1).
After steps 2a, 2b we obtain “large” clusters (mass > p0) and “small” ones (mass ≤ p0). A cluster can also
be “pure” (respectively “impure”) if most of its mass comes from a single Gaussian (respectively from several
Gaussians). Step 3 removes all “small” cluster centers, but (and this is a crucial step of our argument) w.h.p it
will also remove all “impure” cluster centers (Sect. 5.2). The remaining clusters are “pure” and “large”; we show
(Sect. 5.3) that each of their centers is reasonably close to some Gaussian mean μk. Hence, if the Gaussians are
well separated, the selection of final centers c

〈1〉
q in step 4 “cycles through different Gaussians” before visiting a

particular Gaussian for the second time (Sect. 5.4). The rest of this section outlines these steps in more details.

5.1. Step 1 of Pruned MinDiam. Picking the initial centroids c〈0〉

We need to pick a number of initial centers L large enough that each Gaussian has at least 1 center w.h.p.
We formalize this here and find a value for L that ensures the probability of this event is at least 1 − δmiss,
where δmiss is a tolerance of our choice. Another event that must be avoided for a “good” initialization is that
all centroids c

〈0〉
j belonging to a Gaussian end up with initial clusters C0

j that have probability less than p0. If
this happens, then after thresholding, the respective Gaussian is left with no representative centroid, i.e. it is
“missed”. We set the tolerance for this event to δthresh = δmiss. Let t = 2Φ(−Δ/2) the tail probability of a cluster
and Ak the symmetric neighborhood of μk that has ϕμk,1(Ak) = 1 − t.

Proposition 5.3. If we choose

L ≥
(

ln
1

δmisswmin

)/(
(1 − t)wmin

)
and p0 =

1
eL

(5.4)

then the probability over all random samplings of centroids c
〈0〉
1:L that at least one centroid c

〈0〉
j with assigned mass

P [C0
j ] ≥ p0 can be found in each Ak, k = 1 : K, is greater or equal to 1 − 2δmiss.

The proof of this result is complicated but standard fare (e.g. Chernoff bounds) and is therefore omitted.
After steps 1, 2a and 2b of Pruned MinDiam are performed, we obtain centers c

〈1〉
1:L situated at the centers

of mass of their respective clusters C1
1:L. Removing the centers of small clusters follows. We now describe a

beneficial effect of this step.

5.2. Step 3 of Pruned MinDiam. Thresholding removes impure clusters

We introduce the concept of purity of a cluster, which is related to the ratio of points from a certain Gaussian
w.r.t to the total probability mass of the cluster. Denote Pk the probability distribution induced by the k-th
Gaussian ϕμk,1.

Definition 5.4. A cluster C is (1− τ)-pure if most of its points come from a single Gaussian, i.e. if wkPk[C] ≥
(1 − τ)P [C], with τ < 1/2 being a positive constant. A cluster which is not (1 − τ)-pure is τ-impure (or simply
impure).
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c1 c c2
z1 z2

Figure 3. Concrete example of a large impure cluster [z1, z2]; c1, c, c2 represent the consecutive
cluster centers c

〈0〉
j−1, c

〈0〉
j , c

〈0〉
j+1. We demonstrate that if P [z1, z2] > p0 then the interval [c1, c2]

(which is twice its length) must have mass > p1 
 p0. If L is large enough, having such a large
interval contain a single cj is improbable. Numerical values: mixture with Δ = 10, wmin = 0.15,
impurity τ([z1, z2]) = 0.07, P [z1, z2] = 0.097, P [c1, c2] = 0.24; using δmiss = 0.02, τ = 0.015
one gets L = 38, p0 = 0.095 < P [z1, z2], p1 = 0.0105 < P [c1, c2], δimpure = 0.016 
 (1 −
P [c1, c2])L−1 = 0.00003.

The values of τ that we consider useful are of the order 0.001−0.02 and, as it will appear shortly, τ < wmin/2.
The purity of a cluster helps in the following way: if a cluster is pure, then it can be “tied” to one of the
Gaussians. Moreover, its properties (like center of mass) will be dictated by the Gaussian to which it is tied,
with the other Gaussians’ influence being limited; Section 5.3 exploits this idea.

But there will also be clusters that are impure, and so they cannot be tied to any Gaussian. Their properties
will be harder to analyze, and one expects their behavior to be less predictable. Luckily, impure clusters are
very likely small. As we show now, the chance of having an impure cluster with mass larger than p0 is bounded
by a δimpure which we are willing to tolerate.

Because of limited space, we leave out the long and complex rigourous proofs of this result, and give here just
the main ideas. Let Cj = [z1, z2] be a τ -impure cluster, with P [Cj ] ≥ p0, cj the centroid that generates Cj (not
necessarily at its center of mass) and cj−1, cj+1 the centroids of the adjacent clusters (not necessarily centers
of mass). As one can show, even though an impure cluster contains some probability mass from each Gaussian,
in most of this section we only need consider the two Gaussians which are direct neighbors of C. Let us denote
the parameters of these (consecutive) Gaussians by μ1,2, w1,2.

For the purpose of the proof, we are looking here at the situation after step 2a, thus the centroids cj−1,j,j+1

should be c
〈0〉
j−1,j,j+1, but we renounce this convention temporarily to keep the notation light. We want to bound

the probability of cluster Cj being impure and large. Note that step 2b of the Pruned MinDiam does not
affect either of these properties, as it only acts on the centers.

A simple observation is the following. Since z1 = cj−1+cj

2 and z2 = cj+1+cj

2 we have cj+1−cj−1 = 2(z2−z1) =
2Δz. The idea is to show that if an impure region has probability larger than p0, then the interval [cj−1, cj+1]
has probability at least p1, significantly larger than p0. On the other hand, the probability of sampling from P a
single center Cj out of a total of L in an interval of length 2Δz is P [cj−1, cj+1](1−P [cj−1, cj+1])L−1 < (1−p1)L−1.

If p1 and L are large enough, then (1− p1)L−1 def= δimpure will be vanishingly small. We proceed in two steps:
first we find the minimum length Δz0 of a cluster Cj which is impure and large. Then, we find a lower bound
p1 on the probabability of any interval [c, c + 2Δz0] under the mixture distribution. The following assumption
ensures that the purity 1 − τ is attainable in each Gaussian.
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Assumption 5.5. Let γk,k′(x) =
wk′ϕμ

k′ ,1(x)

wkϕμk,1(x) (a local purity measure). Then

∑
k′ �=k

γk,k′

(
Φ−1

(
1
2

+
(1 − τ)p0

2wmin

))
≤ τ

1 − τ
·

The next assumption ensures that Δz0 > 0, i.e. it is an informative bound.

Assumption 5.6. d
(

τp0
wmin

)
< 1

2Δ.

Proposition 5.7 (impure clusters are small w.h.p). Let w1, w2 be the mixture weights of two consecutive
Gaussians and define Δz0 = Δ − d

(
τp0
w1

)
− d

(
τp0
w2

)
,

p1 = w1Φ

(
Δ − 2Δz0

2
− ln w1

w2

Δ − 2Δz0

)
+ w2Φ

(
Δ − 2Δz0

2
− ln w2

w1

Δ − 2Δz0

)

and δimpure = (1 − p1)L−1. Let C0
j , j = 1, . . . , L be the regions associated with c

〈0〉
1:L after step 2a of the Pruned

MinDiam algorithm. If Assumptions 5.1–5.6 hold, then the probability that there exists j ∈ {1, . . . , L} so that
P [C0

j ] ≥ p0 and w1P1[C0
j ] ≥ τP [C0

j ], w2P2[C0
j ] ≥ τP [C0

j ] is at most δimpure. This probability is over the random

initialization of the centroids c
〈0〉
1:L.

To apply this proposition without knowing the values of w1, w2 one needs to minimize the bound p1 over
the range w1, w2 > wmin, w2 + w1 ≤ 1 − (K − 2)wmin. This minimum can be obtained numerically if the other
quantities are known.

We also stress that because of the two-step approach, first minimizing Δz0, then P [c, c + 2Δz0], the bound
δimpure obtained is not tight and could be significantly improved.

5.3. The (1 − τ)-pure cluster

Now we focus on the clusters that have P [C] > p0 and are (1 − τ)-pure. By Proposition 5.7, w.h.p their
centroids are the only ones which survive the thresholding in step 3 of the Pruned MinDiam algorithm. In
this section we will find bounds on the distance |c〈1〉j − μk| between Cj ’s center of mass and the mean of “its”
Gaussian.

We start by listing some useful properties of the standard Gaussian. Denote by r(x) the center of mass of
[x,∞) under the truncated standard Gaussian, and by d(t) the solution of 1 − Φ(d) = t, with 0 < t < 1.
Intuitively, d(t) is the cutoff location for a tail probability of t. Note that any interval whose probability under
the standard normal exceeds t must intersect [−d(t), d(t)]. Let a > 0 (in the following a as to be thought as a
small positive constant).

Proposition 5.8. (i) r(x) is convex, positive and increasing for x ≥ 0. (ii) For w ∈ [2a,∞) the function d(a/w)
is convex, positive and increasing w.r.t w, and r(d(a/w)) is also convex, positive and increasing.

Proposition 5.9. Let C = [z1, z2] be an interval (with z1, z2 possibly infinite), c its center of mass under
the normal distribution ϕμ,1 and P [C] its probability under the same distribution. If 1/2 ≥ P [C] ≥ p, then
|c − μ| ≤ r(d(p)) and min{|z1 − μ|, |z2 − μ|} ≤ d(p) = −Φ−1(p).

The proofs are straightforward and omitted. Define now wmax = 1 − (K − 1)wmin the maximum possible
cluster size in the mixture and

R(w) = r

[
−Φ−1

(
(1 − τ)p0

w

)]
, R̃(w1, w2) = −Φ−1

[
τw1

(1 − τ)w2
+ Φ(d(

(1 − τ)p0

w1
−Δ)

]
.

In the next proposition, we will want to assume that R̃ ≥ 0. The following assumption is sufficient for this
purpose.
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Assumption 5.10. τ
wmin

≤ 1
2 − Φ(−Δ/2)

Proposition 5.11 (The (1 − τ)-pure cluster). Let cluster C = [z1, z2] with z2 > μk, P [C] ≥ p0 and wkPk[C] ≥
(1 − τ)P [C] for some k, with τ satisfying Assumptions 5.5 and 5.10. Let c, ck denote the center of mass of C
under P, Pk respectively. Then

|ck − μk| ≤ R(wk) (5.5)

and, whenever k < K

z2 − μk ≤ −R̃(wk, wk+1) ≤ −R̃(wmax, wmin). (5.6)

Proposition 5.12 (corollary). If ck > μk and k < K then

c − μk ≤ (1 − τ)R(wk) + τ(Δ − R̃(wk, wk+1)) (5.7)

≤ (1 − τ)R(wmax) + τ(Δ − R̃(wmax, wmin)) (5.8)
≤ (1 − τ)R(wmax) + τΔ (5.9)

else

μk − c ≤ R(wk) ≤ R(wmax) c − μk ≤ τ(Δ − R̃(wk, wk+1)). (5.10)

By symmetry, a similar statement involving μk−1, wk−1, μk, wk and c holds when z2 > μk is replaced by z1 < μk.
With it we have essentially shown that an almost pure cluster which is not small cannot be too far from its
Gaussian center μk.

Proof of Proposition 5.11. (5.5) follows from Proposition 5.9. Now for bounding z2, in the case k < K. Because
(1 − τ)P [C] ≤ wk (the contribution of Gaussian k to cluster C cannot exceed all of wk) we have Pk+1[C] ≤
τP [C]
wk+1

≤ τwk

(1−τ)wk+1
and Pk+1[C] = Φ(z2−μk+1)−Φ(z1−μk+1) ≥ Φ(z2−μk+1)−Φ(c1−μk+1) from which the first

inequality in (5.6) follows. The function R̃ is increasing with wk when wk+1 constant or wk+1 = constant−w1,
which gives the second bound. �

Proof of the corollary. First note that we can safely assume z1 ≥ μk. If the result holds for this case, then it is
easy to see that having z1 < μk only brings the center of mass c closer to μk.

c =
wkPk[C]ck +

∑
k′ �=k wk′Pk′ [C]ck′

P [C]
≤ (1 − τ)ck + τz2. (5.11)

Now (5.7), (5.8) follow from Proposition 5.11. For (5.9) Assumption 5.10 assures that R̃ ≥ 0. As a consequence,
this bound is convex in wk. If k = 1 and c1 ≤ μ1, or k = K and cK > μK then the second term in the
sum (5.11) pulls c1 in the direction of μ1 (respectively cK in the direction of μK) and we can get the tighter
bounds (5.10). �

In conclusion, we have shown now that if the unpruned center c “belongs” to Gaussian k, then

c ∈ Ãk(wk) = [ μk − R−
τ (wk), μk + R+

τ (wk) ]

whith R−
τ (wk) = (1− τ)R(wk) + τ(μk − μk−1), R+

τ (wk) = (1− τ)R(wk) + τ(μk+1 − μk), R−
τ (w1) = R(w1), and

R+
τ (wK) = R(wK).
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5.4. Step 4 of Pruned MinDiam. Selecting the centers by the MinDiam heuristic

From Section 5.2 we know that w.h.p all centroids unpruned at this stage are (1−τ) pure. We want to ensure
that after the selection in step 4 each Gaussian has at least one c

〈1〉
j near its center. For this, it is sufficient that

the regions Ãk are disjoint, i.e.

(μk+1 − μk) − (R+
τ (wk) + R−

τ (wk+1)) > R−
τ (wk) + R+

τ (wk)
(μk+1 − μk) − (R+

τ (wk) + R−
τ (wk+1)) > R−

τ (wk+1) + R+
τ (wk+1)

for all k. Replacing R±
τ (wk) with their definitions and optimizing over all possible w1:K ≥ wmin and for all

Δμ ≤ μk+1 − μk ≤ Δmax produces

Ãk = [μk ± (1 − τ)R(wmax) ± τΔmax]

and

Assumption 5.13. (1 − 3τ)Δ − τΔmax > [3R(wmax) + R(wmin)](1 − τ).

6. Simulations

In this section we test our conjecture in practice and run some simulations to emphasize the different
theoretical results of the previous sections. We also investigate whether it is necessary to look at the stability of
k-means with respect to the random drawing of the data set. In the following when we refer to randomization
we mean with respect to the initialization while the resampling corresponds to the random drawing of the data
set.

Setup of the experiments. As distributions we consider mixtures of Gaussians in one, two, and ten dimen-
sions. Each mixture consists of several, reasonably well separated clusters. We report the results on three such
data sets:
• “Two dim four balanced clusters”: mixture of four Gaussians in R

2 with means (−3.3), (0, 0), (3, 3), (3,−3);
the covariance matrix of all clusters is diagonal with entries 0.2 and 1 on the diagonal; the mixing coefficients
are uniform, that is all clusters have the same weight.

• “Two dim four imbalanced clusters”: as above, but with mixing coefficients 0.1, 0.5, 0.3, 0.1.
• “Ten dim ten clusters”: mixture of ten Gaussians in R

10 with means (i, 0, 0, . . .) for i = 1, . . . , 10. All
Gaussians are spherical with variance 0.05 and mixing coefficients are uniform.

As clustering algorithm we use the standard k-means algorithm with the following initializations:
• Standard initialization: randomly pick K ′ data points.
• MinDiam initialization, coincides with step 5 in Figure 2.
• Pruned MinDiam initialization, as analyzed in Section 5 (see Fig. 2)
• Deterministic initialization: K ′ fixed points sampled from the distribution.

For a range of parameters K ′ ∈ {2, . . . , 10} we compute the clustering stability by the following protocols:
• Randomization, no resampling: we draw once a data set of n = 100 points from the distribution. Then we

run the k-means algorithm with different initializations.
• Resampling, no randomization: we fix a set of deterministic starting points (by drawing them once from the

underlying distribution). Then we draw 100 data sets of size n = 100 from the underlying distribution, and
run k-means with the deterministic starting points on these data sets.

• Resampling and randomization: we combine the two previous approaches.
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Figure 4. Simulation results. First row: data set “two dim four balanced clusters”. Second
row: data set “two dim four imbalanced clusters”. Third row: data set “ten dim ten clusters”
(see text for details).

Then we compute the stability (using the instability measure of [3]) with respect to the minimal matching
distance between the clusters. Each experiment was repeated 100 times, we always report the mean values over
those repetitions.

Note that all experiments were also conducted with different data set sizes (n = 50, 100, 500), stability
was computed with and without normalization (we used the normalization suggested in [9]), and the k-means
algorithm was used with and without restarts. All those variations did not significantly effect the outcome,
hence we omit the plots.

Results. First we evaluate the effect of the different initializations. To this end, we count how many initial-
izations were “good initializations” in the sense that each true cluster contains at least one initial center. In
all experiments we consistently observe that both the pruned and non-pruned min diameter heuristic already
achieve many good runs if K ′ coincides with K or is only slightly larger than the true K (of course, good runs
cannot occur for K ′ < K). The standard random initialization does not achieve the same performance. See
Figure 4, first column.

Second, we record how often it was the case that initial cluster centers cross cluster borders. We can see in
Figure 4 (second column) that this behavior is strongly correlated with the number of “good initializations”.
Namely, for initialization methods which achieve a high number of good initializations the fraction of centers
which cross cluster borders is very low. Moreover, one can see in the third column of Figure 4 that centers
usually do not cross cluster borders if the initialization was a good one. This coincides with our theoretical
results.

Finally, we compare the different protocols for computing the stability: using randomization but no resam-
pling, using resampling but no randomization, and using both randomization and resampling, cf. right most
plots in Figure 4. In simple data sets, all three protocols have very similar performance, see for example the
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first row in Figure 4. That is, the stability values computed on the basis of resampling behave very similarly to
the ones computed on the basis of randomization, and all three methods clearly detect the correct number of
clusters. Combining randomization and resampling does not give any advantage. However, on the more difficult
data sets (the imbalanced one and the 10-dimensional one), we can see that resampling without randomization
performs worse than the two protocols with randomization (second and third row of Fig. 4). While the two pro-
tocols using randomization have a clear local minimum (and “global on the right”) around the correct number
of clusters, stability based on resampling alone fails to achieve this. We never observed the opposite effect in
any of our simulations (we ran many more experiments than reported in this paper). This shows, as we had
hoped, that randomization plays an important role for clustering stability, and in certain settings can achieve
better results than resampling alone.

Finally, in the experiments above we ran the k-means algorithm in two modes: with restarts, where the
algorithm is started 50 times and only the best solution is kept; and without restarts. The results did not differ
much (above we report the results without restarts). This means that in practice, for stability based parameter
selection one can save computing time by simply running k-means without restarting it many times (as is usually
done in practice). From our theory we had even expected that running k-means without restarts achieves better
results than with restarts. We thought that many restarts diminish the effect of exploring local optima, and
thus induce more stability than “is there”. But the experiments did not corroborate this intuition.

7. Conclusions and outlook

Previous theoretical work on model selection based on the stability of the k-means algorithm has assumed an
“ideal k-means algorithm” which always ends in the global optimum of the objective function. The focus was
to explain how the random drawing of sample points influences the positions of the final centers and thus the
stability of the clustering. This analysis explicitly excluded the question when and how the k-means algorithm
ends in different local optima. In particular, this means that these results only have a limited relevance for the
actual k-means algorithm as used in practice.

In this paper we study the actual k-means algorithm. We have shown that the initialization strongly influences
the k-means clustering results. We also show that if one uses a “good” initialization scheme, then the k-means
algorithm is stable if it is initialized with the correct number of centers, and unstable if it is initialized with too
many centers. Even though we have only proved these results in a simple setting so far, we are convinced that
the same mechanism also holds in a more general setting.

These results are a first step towards explaining why the selection of the number of clusters based on clustering
stability is so successful in practice [9]. From this practical point of view, our results suggest that introducing
randomness by the initialization may be sufficient for an effective model selection algorithm. Another aspect
highlighted by this work is that the situations K ′ < K and K ′ > K may represent two distinct regimes for
clustering, that require separate concepts and methods to be analyzed.

The main conceptual insight in the first part of the paper is the idea described in Section 1 that the initial
configuration determines the stability or instability of the k-means algorithm. With this idea we indirectly
characterize the “regions of attraction” of different local optima of the k-means objective function. To our
knowledge, this is the first such characterization in the vast literature of k-means.

In the second part of the paper we study an initialization scheme for the k-means algorithm. Our intention
is not to come up with a new scheme, but to show that a scheme already in use is “good” in the sense that it
tends to put initial centers in different clusters. It is important to realize that such a property does not hold for
the widely used uniform random initialization.

On the technical side, most of the proofs and proof ideas in this section are novel. In very broad terms, our
analysis is reminiscent to that of [6]. One reason we needed new proof techniques lie partly in the fact that
we analyze one-dimensional Gaussians, whose concentration properties differ qualitatively from those of high
dimensional Gaussians. We loose some of the advantages high dimensionality confers. A second major difference
is that k-means behaves qualitatively differently from EM whenever more than one Gaussian is involved. While
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EM weights a point “belonging” to a cluster by its distance to the cluster center, to the effect that far away
points have a vanishing influence on a center cj , this is not true for k-means. A far-away point can have a
significative influence on the center of mass cj , precisely because of the leverage given by the large distance. In
this sense, k-means is a more brittle algorithm than EM, is less predictible and harder to analyze. In order to
deal with this problem we “eliminated” impure clusters in Section 5.2. Third, while [6] is concerned with finding
the correct centers when K is known, our analysis carries over to the regime when K ′ is too large, which is
qualitatively very different of the former.

Of course many initialization schemes have been suggested and analyzed in the literature for k-means (for
examples see [1, 10]). However, these papers analyze the clustering cost obtained with their initialization, not
the positions of the initial centers.
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