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Bandits With Heavy Tail

Sébastien Bubeck, Nicolo Cesa-Bianchi, and Gabor Lugosi, Member, IEEE

Abstract—The stochastic multiarmed bandit problem is well
understood when the reward distributions are sub-Gaussian. In
this paper, we examine the bandit problem under the weaker
assumption that the distributions have moments of order 1 + =,
for some = € (0, 1]. Surprisingly, moments of order 2 (i.e., finite
variance) are sufficient to obtain regret bounds of the same order
as under sub-Gaussian reward distributions. In order to achieve
such regret, we define sampling strategies based on refined estima-
tors of the mean such as the truncated empirical mean, Catoni’s
M -estimator, and the median-of-means estimator. We also derive
matching lower bounds that also show that the best achievable
regret deteriorates when = < 1.

Index Terms—Heavy-tailed distributions, regret bounds, robust
estimators, stochastic multi-armed bandit.

I. INTRODUCTION

N this paper, we investigate the classical stochastic multi-

armed bandit problem introduced by [1] and described as
follows: an agent facing K actions (or bandit arms) selects one
arm at every time step. With each arm i € {1,..., K} there
is an associated probability distribution 14 with finite mean ;.
These distributions are unknown to the agent. At each round
t =1,...,n, the agent chooses an arm I;, and observes a re-
ward drawn from vy, independently from the past given I;. The
goal of the agent is to minimize the regret

n

R, =n ;max, g — ; E pg,.

We refer the reader to [2] for a survey of the extensive lit-
erature of this problem and its variations. The vast majority
of authors assume that the unknown distributions 1; are sub-
Gaussian, that is, the moment generating function of each v; is
such that if X is a random variable drawn according to the dis-
tribution »;, then for all A > 0,

A2 e
InE MY -FX) < % and In EMEX-Y) < &

ey
2

where v > 0, the so-called “variance factor” is a parameter
that is usually assumed to be known. In particular, if rewards
take values in [0, 1], then by Hoeffding’s lemma, one may take
v = 1/4. Similarly to the asymptotic bound of [3, Th. 4.10], this
moment assumption was generalized in [2, Ch. 2] by assuming
that there exists a convex function ¢ : R+ — R such that, for
allA > 0,

InE "B < () and In EXNEY=X) <y(A). (2)
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Then, one can show that the so-called t)-UCB strategy (a variant
of the basic UCB strategy of [4]) satisfies the following regret
guarantee. Let A; = max;—; i p; — 4, and ¥ the Le-
gendre—Fenchel transform of ¢, defined by

¥*(e) = sup ()\5 — 1/;(/\))

AER

Then, »-UCB! satisfies

R, < Y

i A; >0

4—Ai] +2
Q/}*(AL/2) nn .

In particular, when the reward distributions are sub-Gaussian,
the regret bound is of the order ), (log n)/A;, which is known
to be optimal even for bounded reward distributions, see [4].

While this result shows that assumptions weaker than sub-
Gaussian distributions may suffice for a logarithmic regret, it
still requires the distributions to have finite moment generating
function. Another disadvantage of the bound above is that the
dependence on the gaps A; deteriorates as the tail of the dis-
tributions become heavier. In fact, as we show it in this paper,
the bound is suboptimal when the tails are heavier than sub-
Gaussian.

Such heavy-tailed reward distributions naturally arise in
various contexts where bandit algorithms have been used in
the past. A prominent example is the distribution of delays in
end-to-end network routing [5], a typical application domain
for bandits—see, e.g., [2]. Another interesting example is the
distribution of running times of heuristics for solving hard
combinatorial problems [6], where bandit algorithms have been
used to select the heuristics [7].

In this paper, we investigate the behavior of the regret when
the distributions are heavy tailed, and might not have a finite
moment generating function. We show that under significantly
weaker assumptions, regret bounds of the same form as in the
sub-Gaussian case may be achieved. In fact, the only condition
we need is that the reward distributions have a finite variance.
Moreover, even if the variance is infinite but the distributions
have finite moments of order 1 4 ¢ for some ¢ > 0, one may still
achieve a regret logarithmic in the number 7 of rounds through
the dependency on the A;s worsens as ¢ gets smaller. For in-
stance, for distributions with moment of order 1 + ¢ bounded
by 1 we derive a strategy that satisfies

R,< Y

1: ;>0

1
4\¢
81 — ] logn+ 5A,;
(Al) g) ?
The key to this result is to replace the empirical mean by more
refined robust estimators of the mean and construct “upper con-
fidence bound” strategies. Note that algorithms based on the em-
pirical mean estimator have been previously applied to heavy-

More precisely, (@, ¥)-UCB with o = 4.
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tailed stochastic bandits in [8] but they obtained polynomial re-
gret bounds while we show logarithmic regret bounds.

We also prove matching lower bounds that show that the pro-
posed strategies are optimal up to constant factors. In particular,
the dependency in 1/ A}/ ° is unavoidable.

In the following, we start by defining a general class of sam-
pling strategies that are based on the availability of estimators
of the mean with certain performance guarantees. Then, we ex-
amine various estimators for the mean. For each estimator, we
describe their performance (in terms of concentration to the
mean) and deduce the corresponding regret bound.

II. RoBUST UPPER CONFIDENCE BOUND STRATEGIES

The rough idea behind upper confidence bound (UCB) strate-
gies (see [3], [4], [9]) is that one should choose an arm for
which the sum of its estimated mean and a confidence interval
is highest. When the reward distributions all satisfy the sub-
Gaussian condition (1) for a common variance factor », then
such a confidence interval is easy to obtain. Suppose that at a
certain time instance arm ¢ has been sampled s times and the ob-
served rewards are X; 1,...,X; . Then, the X; ., 7 =1,...,s
are i.i.d. random variables with mean E X; , = u; and by a
simple Chernoff bound, for any § € (0, 1), the empirical mean
(1/s)>°r_, X, , satisfies with probability at least 1 — 8,

1< 20 log(1
LS X, <oy 20 Roe0/8),
Sr:l ’ 8

This property of the empirical mean turns out to be crucial in
order to achieve a regret of optimal order. However, when the
sub-Gaussian assumption does not hold, one cannot expect the
empirical mean to have such an accuracy. In fact, if one only
knows, say, that the variance of each X, is bounded, then
the best possible confidence intervals are significantly wider,
deteriorating the performance of standard UCB strategies. (See
Appendix A for properties of the empirical mean under distri-
butions of heavy tails.)

The key to successful handling heavy-tailed reward distribu-
tions is to replace the empirical mean with other, more robust
estimators of the mean. All we need is a performance guarantee
like the one shown above for the empirical mean. More pre-
cisely, we need a mean estimator with the following property.

Assumption 1: Let £ € (0,1] be a positive parameter and
let ¢, v be positive constants. Let X, ..., X,, be i.i.d. random
variables with finite mean p. Suppose that for all § € (0,1)
there exists an estimator iz = ji(n, ) such that, with probability
at least 1 — 4,

on 2/ (14e
ﬁ<M+U1/(1+€) (M) /(1+e)
- T

and also, with probability at least 1 — 8,

- s/(1+e
w<u+ 1/ (1+e) (0410!{(1/6)> e .
- n
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Robust UCB:
Parameter: ¢ € (0, 1], mean estimator 7i(t, ).

For arm i, define i s,; as the estimate 7i(s,t~2) based on the
first s observed values X 1,...,X; s of the rewards of arm .
Define the index

P /(14e)
~ log t* ©
Bis = Wis,t + 1/(1+e) < )
st = Mis,t T U s

for s,t > 1 and B; o+ = +o0.

At time ¢, draw an arm maximizing B; 1, (t—1),¢-

Fig. 1. Robust UCB policy.

For example, if the distribution of the X, satisfies the
sub-Gaussian condition (1), then Assumption 1 is satisfied
fore = 1, ¢ = 2, and variance factor v. Interestingly, the
assumption may be satisfied for significantly more general
distributions by using more sophisticated mean estimators. We
recall some of these estimators in the following sections, where
we also show how they satisfy Assumption 1. As we shall see,
the basic requirement for Assumption 1 to be satisfied is that
the distribution of the X; has a finite moment of order 1 + €.

We are now ready to define our generalized robust UCB
strategy, described in Fig. 1. We denote by 7;(¢) the (random)
number of times arm ¢ is selected up to time ¢.

The following proposition gives a performance bound for the
robust UCB policy provided that the reward distributions and the
mean estimator used by the policy jointly satisfy Assumption 1.
Below we exhibit several mean estimators that, under various
moment assumptions, lead to regret bounds of optimal order.

Proposition 1: Lete € (0,1] and let fi(s, ) be a mean es-
timator. Suppose that the distributions 1, . .., ¥k are such that
the mean estimator satisfies Assumption 1 forallz =1,..., K.
Then, the regret of the Robust UCB policy satisfies

%
Ro< Y (2(:<;—’> 10gn+5Ai>. 3)
i1 A, >0 @

Also, if n is such that logn > max; (5A,§1+5)/6/(2cvl/5)),
then

1 1+e
R, < nT¥ <4Kclog n) ot/ (Fe) 4)

Note that a regret of at least >, A; is suffered by any strategy
that pulls each arm at least once. Thus, the interesting term in

(3) is the one of the order of ) ;. 1 - (v/A) : log n. We show
below in Theorem 2 that this term is of optimal order under a
moment assumption on the reward distributions. We also show
in Theorem 2 that the gap-independent inequality (4) is optimal
up to a logarithmic factor.

Proof: Both proofs of (3) and (4) rely on bounding the
expected number of pulls for a suboptimal arm. More precisely,
in the first two steps of the proof we prove that, for any + such
that A; > 0,

logn + 5. (5)
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TS)/ lOg n | . Note

that, up to rounding, (5) is equivalent to E T,(n) < u+4.
First Step: We show that if I; = 4, then one of the fol-
lowing three inequalities is true: either

To lighten notation, we introduce v = {2(’

B 1—1) S 1, 6)
or
e/(1+€)
~ o [ clogt?
Aiie-v.e > pi+ ot/ 0F) (m) @
or

1/e

v

log n. ®)

Indeed, assume that all three inequalities are false. Then, we
have

Bi- 1it-1).t
>t
=p + A
) < e/(14=
S i 201059 (&"2)) [

T(t—1
clog t*

42 N e/ (1+e)
e
Tt - 1))

which implies, in particular, that I; # .

Second Step: Here, we first bound the probability that (6)
or (7) hold. By Assumption 1 as well as an union bound over
the value of T;- (¢ — 1) and T;(¢ — 1) we obtain

> BiT(t-1), T pt/+e) (

= Bi,T,-(t—l),t

t
1 2
P((6) or (7) is truc) Z " < 5

Now using the first step, we obtain

77) =E zn: ]1[/’:1‘
t=1

T

<u+E Z ]llt:i and (8) is false
t=u+1
"

<wu+ E Z ]]-(6) or (7) is true
t—=u+1
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This concludes the proof of (5).

Third Step: Using that R,, = Y"1~ | A;ET;(n) and (5), we
directly obtain (3). On the other hand, for (4) we use Holder’s
inequality to obtain

R'n
= 3 A(ETi(n) T (ETy(n) ™=
A >0
1 vlle e
< Z A (ET;(n)) ™ =Sy logn+5
A >0 i

< Z A (ET;(n)
1:A;>0
(by assumption on n)

vl/e T
de————logn
AEI-}—s)/E
141»5
< KT ( Z [ET7;(n)) (4¢) T2 0t/ ) (log ) T+
#A:>0
(by Holder’s inequality)

< niEE <4Kc log n) pl/ (),

]

In the next sections, we show how Proposition 1 may be ap-
plied, with different mean estimators, to obtain optimal regret
bounds for possibly heavy-tailed reward distributions.

A. Truncated Empirical Mean

In this section, we consider the simplest of the proposed mean
estimators, a truncated version of the empirical mean. This esti-
mator is similar to the “winsorized mean” and “trimmed mean”
of Tukey, see [10].

The following lemma shows that if the (1 + ¢)th raw moment
is bounded, then the truncated mean satisfies Assumption 1.

Lemma 1: Letd € (0,1),2 € (0,1],and » > 0. Consider the

truncated empirical mean jip defined as
T

1
fr = — X LY.
fr = ; t {\X,\S(log(i,ﬂl)) 1#}

If E| X |**® < u, then with probability at least 1-46,
log(d 1))
?

n

ﬁT§u+4uﬁ<

1
Proof: Let D —log/(u(gt—l) o
inequality for bounded random variables, noting that

E(X?1x<g) < uB'"¢, we have, with probability at

. From Bernstein’s

least 1 — (3
EX -~ ZXt]l“Yf‘SBf
nia
:;Z (EX - E (Xlx)<B,))
1 T
+ n ([E (XﬂlegBt) - Xtﬂ\xt\gat)
D=1
1 T 1 mn V V
== ; E (X1 xp5p ;(E (XTx1<5,)- Xilix, <5,
y l n o 2B,1L75ulog(§fl) N B, log((S*l)
oon B n 3n
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where in the last line we also used E (X1 x5p) <
E(|X|'*/Bf) = wu/B;. An easy computation concludes
the proof. ]
The following is now a straightforward corollary of Proposi-
tion 1 and Lemma 1.
Theorem 1: Lete € (0,1] and v > 0. Assume that the reward
distributions v1, . .., v satisfy

Xi|1JrE <u

Ex-., vie{l,...,K}. 9)
Then, the regret of the Robust-UCB policy used with the trun-
cated mean estimator defined above satisfies

1
du )\ F
R, < Z (8 (Ku) 1ogn—|—5Ai>.
i:A;>0 ¢

When € = 1, the only assumption of the theorem above is that
each reward distribution has a finite variance. In this case, the
obtained regret bound is of the order of >, (log n)/A;, which is
known to be not improvable in general, even when the rewards
are bounded—note, however, that the KL-UCB algorithm of [11]
is never worse than Robust-UCB in case of bounded rewards. We
find it remarkable that regret of this order may be achieved under
the only assumption of finite variance and one cannot improve
the order by imposing stronger tail conditions.

When the variance is infinite but moments of order 1 + ¢ are
available, we still have a regret that depends only logarithmi-
cally on n. The bound deteriorates slightly as the dependency
on 1/A; is replaced by 1/ Ag /% We show next that this depen-
dency is inevitable.

Theorem 2: For any A € (0,1/4), there exist two distribu-
tions v and 15 satisfying (9) with w = 1 and with p1q — 19 = A,
such that the following holds. Consider an algorithm such that
for any two-armed bandit problem satisfying (9) with» = 1 and
with arm 2 being suboptimal, one has E 7T>(n) = o(n®) for any
a@ > 0. Then, on the two-armed bandit problem with distribu-
tions v and v», the algorithm satisfies

R 0.4
liminf —— > —.
n—+oo logn Az

(10)

Furthermore, for any fixed n, there exists a set of K distributions
satisfying (9) with © = 1 and such that for any algorithm, one
has

R, > 0.01 KT p T, (11)

Proof: To prove (10), we take v1 = (1 — 417%)§ +
vy, with v = (2A)%, and vy = (1 + Ay — 41+9)8, +
(v'*€ — Ay)81/, (with &, being the Dirac distribution on ).
It is easy to see that 14 and v, are well defined, and they sat-
isfy (9) with v = 1 and ;1 — p2 = A. Now clearly, the
two-armed bandit problem with these two distributions is equiv-
alent to the two-armed bandit problem with two Bernoulli dis-
tributions with parameters y**¢ and 4!+ — A~, respectively.
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Slightly more formally, we could define a new algorithm A’
that on Ber(y!*2), Ber(y!™¢ — A«) behaves equivalently to
the original algorithm A on vy and v». Therefore, we can use
[12, Th. 2.7] to directly obtain the following lower bound for
A

ET5(n 1
lim inf 2‘(77) >
n—otoe logn KL (Ber(fyl‘*‘f — Av), Ber('yl"‘g))

where KL denotes Kullback—Leibler divergence. This implies
the following lower bound for the original algorithm A:

... Ry A
liminf —— > .
n—tec logn = g, (Ber(*lefE — A), Ber(vl“))

Equation (10) then follows directly by using KL(Ber(p),
Ber(g)) < % along with straightforward computations.
The proof of (11) follows the same scheme. We use the same
distributions as above and we consider the multiarmed bandit
problem where one arm has distribution #1, and the K — 1 re-
maining arms have distribution v». Furthermore, we set A =
(K /n)T= for this part of the proof. Now we can use the same
proofas for [12, Th. 2.6] on the modified algorithm A’ that runs
on the Bernoulli distributions corresponding to 11 and v>. We
leave the straightforward details to the reader. |

B. Median of Means

The truncated mean estimator and the corresponding bandit
strategy are not entirely satisfactory as they are not translation
invariant in the sense that the arms selected by the strategy
may change if all reward distributions are shifted by the same
constant amount. The reason for this is that the truncation is
centered, quite arbitrarily, around zero. If the raw moments
Ex~u | X |1‘*“E are small, then the strategy has a small regret.
However, it would be more desirable to have a regret bound
in terms of the centered moments Ex-.,,, | X — p;|'T¢. This is
indeed possible if one replaces the truncated mean estimator by
more sophisticated estimators of the mean. We show one such
possibility, the “median-of-means” estimator in this section.
In the next section, we discuss Catoni’s M -estimator, a quite
different alternative.

The median-of-means estimator was proposed by [13] and
[14]. The simple idea is to divide the data into various disjoint
blocks. Within each block one calculates the standard empirical
mean and takes a median value of these empirical means. The
next lemma shows that for certain block size the estimator has
the property required by our robust UCB strategy.

Lemma 2: Let & € (0,1) and ¢ € (0,1] and n >
16log(1/6) + 2. Let Xi,...,X,, be iid. random vari-
ables with mean E X = p and centered (1 4+ ¢)th moment
E|X — u|™* = w. Let k = |[8log(e'/®/6) A n/2] and
N = |[n/k]. Let

EN

> X

1 & 1
/),1:NE th-»»/?'k:N
t=1 t=(k—1)N+1
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Modified robust UCB-median of means:

For arm i, define ;s as the median-of-means estimate
(s, t_z) based on the first s observed values X 1, ..., Xi,s
of the rewards of arm 4. Define the index

~ 16 log(el/82)\ &/ 119
Biv&,t = Wi,s,t + (121})1/(1+€) (% ,

for s,t > 1 such that s > 32logt + 2 and B;,; =
otherwise.

+00
At time ¢, draw an arm maximizing B; 7;(:—1),:-

Fig. 2. Modified robust UCB policy with the median-of-means estimator.

be %k empirical mean estimates, each one computed on NV data
points. Consider a median fiz; of these empirical means. Then,
with probability at least 1 — 4,

1 <16 1og(el/86‘1)> 1te

Lar < g+ (120) T -

Proof: Letnp > 0and Y, = 1,54, for £ € {1,... k}.
According to (12) in the Appendix, Y; has a Bernoulli distribu-
tion with parameter

< 3v
b= Neire

Note that for

L [ 1\TE
n = (12v)7= (—)
N

we have p < 1/4. Thus, using Hoeffding’s inequality for the
tail of a binomial distribution, we obtain

k
P > i+ 1) =P (Zn > k/z)
=1
< exp (—2k(1/2 — p)?)
< exp(—k/8) < 6.

]
This bound has the same form as in Assumption 1,
though it only holds with the additional requirement that
n > 16log(1/8) + 2 and therefore it does not formally fit
in the framework of the robust UCB strategy as described in
Section II. However, by a simple modification, one may define
a strategy that incorporates such a restriction. In Fig. 2, we
describe a policy based on the median-of-means estimator.
Then, by a simple modification of the proof of Proposition 1,
and using Lemma 2, we obtain the performance bound below.
In some situations it significantly improves on Theorem 1 as
the bound depends on the centered moments of order 1 + ¢
rather than on raw moments. However, a term of the order
>-; Ajlogn appears due to the restricted range of validity of
the median-of-means estimator.

7715

Theorem 3: Lete € (0,1] andv > 0. Assume that the reward
distributions v, . . ., Vi satisfy

Exew, | X — e <w Vie{l,...,K}.

Then, the regret of the Robust-UCB policy used with the me-
dian-of-means mean estimator defined in Lemma 2 satisfies

@ |~

logn + 32A; logn + 7Ai) .

R.< Y (32(?)
it A;>0 ¢

C. Catoni’s M Estimator

Finally, we consider an elegant mean estimator introduced
by [15]. As we will see, this estimator has similar performance
guarantees as the median-of-means estimator but with better,
near optimal, numerical constants. However, we only have a
good guarantee in terms of the variance. Thus, in this section
we assume that the variance is finite and we do not consider the
case ¢ < 1.

Catoni’s mean estimator is defined as follows: let 1 :
be a continuous strictly increasing function satisfying

R—R

—log(l — « +2?/2) < ¢(x) < log(l 4 = + 2%/2).

Let 6 € (0, 1) be such that n > 2log(1/é) and introduce

_ 2log(1/6)
a5 = " 2ulog(1/6) \°
IL(U + 77,7210g(1/6))
If X;,...,X,, beiid. random variables, then Catoni’s esti-

mator is defined as the unique value fic: = jic(n, §) such that
Z ’Z/J(Oéﬁ(Xi — ﬁc)) = 0.
i=1

Catoni [15] proves that if n > 41log(1/6) and the X; have mean
4 and variance at most v, then, with probability at least 1 — 8,

o loo §—1

e < 42 vlogé
n
and a similar bound holds for the lower tail.

Similarly to the case of the median-of-means estimator, here
we also have an additional requirement that . > 4log(1/8) and
the general estimator described at the beginning of Section II
needs to be slightly modified. The policy described in Fig. 3 as-
sumes that there is a known upper bound v for the largest vari-
ance of any reward distribution. Then, by a simple modification
of the proof of Proposition 1, we obtain the following perfor-
mance bound.



7716

Modified robust UCB-Catoni’s estimator:

For arm 4, define Zi; s, as Catoni’s mean estimate ic(s,t™2)
based on the first s observed values X;1,...,X;s of the
rewards of arm 4. Define the index

4vlog t? ) 1/3

Bi st = Wi,s,t + < p,

for s,¢ > 1 such that s > 8logt and B; s, = 400 otherwise.

At time ¢, draw an arm maximizing B; 1, (t—1),:-

Fig. 3. Modified robust UCB policy with Catoni’s estimator.

Theorem 4: Let v > 0. Assume that the reward distributions
vy, ..., vy satisfy

X —wl*<o Vie{l,...,K}.

[EXNI/L'

Then, the regret of the modified robust UCB policy satisfies

R, < Z (81} logn

+ 8Ai log n + 5AL‘> .
A, >0 ‘

The regret bound has better numerical constants than its analog
based on the median-of-means estimator.

III. DI1SCUSSION AND CONCLUSION

In this paper, we have extended the UCB algorithm to
heavy-tailed stochastic multiarmed bandit problems in which
the reward distributions have only moments of order 1 4 & for
some ¢ € (0, 1]. In this setting, we have compared three estima-
tors for the mean reward of the arms: median-of-means, trun-
cated mean, and Catoni’s M -estimator. The median-of-means
estimator gives a regret bound that depends on the central
(1 + &)-moments of the reward distributions, without need
of knowing bounds on these moments. The truncated mean
estimator, instead, delivers a regret bound that depends on the
raw (1 4+ &)-moments, and requires the knowledge of a bound
u on these moments. Finally, Catoni’s estimator depends on
the central moments like the median-of-means, but it requires
the knowledge of a bound v on the central moments, and only
works in the special case ¢ = 1 (where it gives the best leading
constants on the regret). A tradeoff in the choice of the esti-
mator appears if we take into account the computational costs
involved in the update of each estimator as new rewards are
observed. Indeed, while the truncated mean requires constant
time and space per update, the median-of-means is slightly
more difficult to update, requiring O(logé~!) space and
O(loglog 6~1) time per update. Finally, Catoni’s M -estimator
requires linear space per update, which is an unfortunate feature
in this sequential setting.

It is an interesting question whether there exists an estimator
with the same good concentration properties as the median-of-
means, but requiring only constant time and space per update.
The truncated mean has good computational properties but the
knowledge of raw moment bounds is required. So it is nat-
ural to ask whether we may drop this requirement for the trun-
cated mean or some variants of it. Finally, our proof techniques
heavily rely on the independence of rewards for each arm. It

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 11, NOVEMBER 2013

is unclear whether similar results could be obtained for heavy-
tailed bandits with dependent reward processes.

While we focused our attention on bandit problems, the con-
centration results presented in this paper may be naturally ap-
plied to other related sequential decision settings. Such exam-
ples include the racing algorithms of [16], and more generally
nonparametric Monte Carlo estimation, see [17] and [18]. These
techniques are based on mean estimators, and current results are
limited to the application of the empirical mean to bounded re-
ward distributions.

APPENDIX
EMPIRICAL MEAN

In this Appendix, we discuss the behavior of the standard em-
pirical mean when only moments of order 1 4 & are available.
We focus on finite-sample guarantees (i.e., nonasymptotic re-
sults), as this is the key property to obtain finite-time results for
the multiarmed bandit problem.

Let X, X7, ..., X, be areal i.i.d. sequence with finite mean
/i We assume that for some ¢ € (0,1] and v > 0, one has
E|X — p|*t¢ < v. We also denote by # an upper bound on the
raw moment of order 1 + ¢, that is E| X |1+ < «.

Lemma 3: Let [i be the empirical mean

1 n
p=—-> X

Then, for any § € (0, 1), with probability at least 1 — §, one has

v\
< .
HEp <6n5)

Proof: Letn,a > 0,

P(r—p>n <P(3te{l,....n}:|X;,—pu|l>a)
1 n
+P (T—L ;(Xt - /t)]1|Xf—u|ga > 77) .

The first term on the right-hand side can be bounded by using a
union bound followed by Chebyshev’s inequality (for moments
of order 1 + ¢):

E|X — ptte <

P(3te{l,....,n}:|X;— pu|>a)<n pEE < T

On the other hand, Chebyshev’s inequality together with the fact
that E(X — p)ljx _pj<a = —E(X — p)l|x |5, give for the
second term

1 T
P (; Z(Xt - /")]I\thu\ga > 77)

D=1

72

2
1 1
—2|E (I_L Z(Xt - /1’)]1Xfu<a>

g =1
2
< IE(X - N)Z]I\Xf;dga + (IE(X M g'X*MSG)

— 2

IN

nn n
. 2
IE(X - /l')z]l\Xf;dga (IE(X - ll’)]lle,uv|>a)
= 2 + 2 :
ny n
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By applying a trivial manipulation on the first term, and using
Holder’s inequality with exponentsp =1+ ceandg=1+1/¢
for the second term, we obtain that the last expression above is
upper bounded by

(EIX — p") T (P(|X — | > a)) T

E|X — p[tteal== N

nn? 72
1—e 2 2¢
va vIrEpTHe
< . :
2 2aZ
Thus, we proved that
l1—¢ 2
nv va v
Plii—p>n) < + .
(r—=p>m) < atte T T2 T oRaz

Taking @ = nn entails

2
—~ 2v v
P(u — K> n) S nsnl+s + (nsn1+s> :

Note that if W > 1 then the bound is trivial, and thus we
always have

. 3v
Pl —p>mn) < nepite’ (12)
The proof now follows by straightforward computations. Wl

It is easy to see that the order of magnitude of (12) is tight
up to a constant factor. Indeed, let v € (0,1) and consider the
distribution (1 — v'*%)8y +v**=6; /., (with &, being the Dirac
distribution on ). Clearly, for this distribution we have E| X —
p|1T¢ < 1, s0 (12) shows that for an i.i.d. sequence drawn from
this distribution, one has

P(ii —pu>n) < 77577—14'5

We can restrict our attention to the case where n > n T,
for otherwise the above upper bound is trivial. Now consider
v = ﬁ Note that we have p = +* = (%;n) < 7 and in
particular this implies 1/v = 2nn > n(n + p). From this last
inequality and basic computations, we obtain

P —p>n > P(Hie {1,...,n}: X; 277,(7)+/1,))
Z[F"(EI'IIG{1,...,77,}:Xi:1/'y)
=1—(1—A")"

1
=1-—exp <nln (1 -
(2nm)t+e
1
>1—e —_
= ( nf<2n>1+f>

1 1
=i O (n&*(zn)He)

which shows that (12) is tight up to a constant factor for this
distribution.

Clearly, the concentration properties of the empirical mean
are much weaker than for the truncated empirical mean or the

7717

median-of-means. Indeed, while the dependency on 7 in the
confidence term is similar for the three estimators, the depen-
dency on 1/4 is polynomial for the empirical mean and polylog-
arithmic for the truncated empirical mean and the median-of-
means. As we just showed, this is not an artifact of the proof
method, and the empirical mean indeed has polynomial devia-
tions (as opposed to the exponential deviations of the two other
estimators). This remark is at the basis of the theory of robust
statistics and many approaches to fix the above issue have been
proposed, see for example [19], [20].
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