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Abstract. We consider the framework of stochastic multi-armed bandit prob-
lems and study the possibilities and limitations of strategies that explore sequen-
tially the arms. The strategies are assessed in terms of their simple regrets, a regret
notion that captures the fact that exploration is only constrained by the number of
available rounds (not necessarily known in advance), in contrast to the case when
the cumulative regret is considered and when exploitation needs to be performed
at the same time. We believe that this performance criterion is suited to situations
when the cost of pulling an arm is expressed in terms of resources rather than
rewards. We discuss the links between simple and cumulative regrets. The main
result is that the required exploration—exploitation trade-offs are qualitatively dif-
ferent, in view of a general lower bound on the simple regret in terms of the
cumulative regret.

1 Introduction

Learning processes usually face an exploration versus exploitation dilemma, since they
have to get information on the environment (exploration) to be able to take good actions
(exploitation). A key example is the multi-armed bandit problem [Rob52], a sequential
decision problem where, at each stage, the forecaster has to pull one out of K given
stochastic arms and gets a reward drawn at random according to the distribution of
the chosen arm. The usual assessment criterion of a strategy is given by its cumulative
regret, the sum of differences between the expected reward of the best arm and the
obtained rewards. Typical good strategies, like the UCB strategies of [ACBF(2], trade
off between exploration and exploitation.

Our setting is as follows. The forecaster may sample the arms a given number of
times n (not necessarily known in advance) and is then asked to output a recommenda-
tion, formed by a probability distribution over the arms. He is evaluated by his simple
regret, that is, the difference between the average payoff of the best arm and the average
payoff obtained by his recommendation. The distinguishing feature from the classical
multi-armed bandit problem is that the exploration phase and the evaluation phase are
separated. We now illustrate why this is a natural framework for numerous applications.

Historically, the first occurrence of multi-armed bandit problems was given by med-
ical trials. In the case of a severe disease, ill patients only are included in the trial and
the cost of picking the wrong treatment is high (the associated reward would equal a
large negative value). It is important to minimize the cumulative regret, since the test
and cure phases coincide. However, for cosmetic products, there exists a test phase



separated from the commercialization phase, and one aims at minimizing the regret of
the commercialized product rather than the cumulative regret in the test phase, which
is irrelevant. (Here, several formula for a cream are considered and some quantitative
measurement, like skin moisturization, is performed.)

The pure exploration problem addresses the design of strategies making the best
possible use of available numerical resources (e.g., as CPU time) in order to optimize
the performance of some decision-making task. That is, it occurs in situations with a
preliminary exploration phase in which costs are not measured in terms of rewards but
rather in terms of resources, that come in limited budget. A motivating example con-
cerns recent works on computer-go (e.g., the MoGo program of [GWMTO06]). A given
time, i.e., a given amount of CPU times is given to the player to explore the possible
outcome of a sequences of plays and output a final decision. An efficient exploration
of the search space is obtained by considering a hierarchy of forecasters minimizing
some cumulative regret — see, for instance, the UCT strategy of [KS06] and the BAST
strategy of [CMO07]. However, the cumulative regret does not seem to be the right way
to base the strategies on, since the simulation costs are the same for exploring all op-
tions, bad and good ones. This observation was actually the starting point of the notion
of simple regret and of this work. A final related example is the maximization of some
function f, observed with noise, see, e.g., [Kle04,BMSS09]. Whenever evaluating f at
a point is costly (e.g., in terms of numerical or financial costs), the issue is to choose
as adequately as possible where to query the value of this function in order to have a
good approximation to the maximum. The pure exploration problem considered here
addresses exactly the design of adaptive exploration strategies making the best use of
available resources in order to make the most precise prediction once all resources are
consumed.

As aremark, it also turns out that in all examples considered above, we may impose
the further restriction that the forecaster ignores ahead of time the amount of available
resources (time, budget, or the number of patients to be included) — that is, we seek for
anytime performance. The problem of pure exploration presented above was referred
to as “budgeted multi-armed bandit problem” in the open problem [MLGO04]. [Sch06]
solves the pure exploration problem in a minmax sense for the case of two arms only
and rewards given by probability distributions over [0, 1]. [EDMMO02] and [MT04] con-
sider a related setting where forecasters perform exploration during a random number
of rounds 7" and aim at identifying an e—best arm. They study the possibilities and
limitations of policies achieving this goal with overwhelming 1 — § probability and in-
dicate in particular upper and lower bounds on (the expectation of) T'. Another related
problem in the statistical literature is the identification of the best arm (with high prob-
ability). However, the binary assessment criterion used there (the forecaster is either
right or wrong in recommending an arm) does not capture the possible closeness in
performance of the recommended arm compared to the optimal one, which the simple
regret does. Unlike the latter, this criterion is not suited for a distribution-free analysis.



Parameters: K probability distributions for the rewards of the arms, v1, ..., vk

Foreachroundt =1,2, ...,

(1) the forecaster chooses ¢; € P{1,..., K} and pulls I; at random according to ¢;

(2) the environment draws the reward Y; for that action (also denoted by X I, T, (1) with
the notation introduced in the text);

(3) the forecaster outputs a recommendation ¢; € P{1,..., K};

(4) If the environment sends a stopping signal, then the game takes an end; otherwise, the
next round starts.

Fig. 1. The pure exploration problem for multi-armed bandits.

2 Problem setup, notation

We consider a sequential decision problem for multi-armed bandits, where a forecaster
plays against a stochastic environment. ' > 2 arms, denoted by 5 = 1,..., K, are
available and the j—th of them is parameterized by a probability distribution v; over
[0, 1] (with expectation f;); at those rounds when it is pulled, its associated reward is
drawn at random according to v;, independently of all previous rewards. For each arm j
and all time rounds n > 1, we denote by T} (n) the number of times j was pulled from
rounds 1 ton, and by X1, X0, ..., X, 1, (n) the sequence of associated rewards.

The forecaster has to deal simultaneously with two tasks, a primary one and an
associated one. The associated task consists in exploration, i.e., the forecaster should
indicate at each round ¢ the arm I; to be pulled. He may resort to a randomized strategy,
which, based on past rewards, prescribes a probability distribution ¢; € P{1,..., K}
(where we denote by P{1,..., K} the set of all probability distributions over the in-
dexes of the arms). In that case, I; is drawn at random according to the probability
distribution ¢, and the forecaster gets to see the associated reward Y;, also denoted by
X1, 1, (ty With the notation above. The sequence (p¢) is referred to as an allocation
strategy. The primary task is to output at the end of each round ¢ a recommendation
¥ € P{1,..., K} tobe used to form a randomized play in a one-shot instance if/when
the environment sends some stopping signal meaning that the exploration phase is over.
The sequence (v;) is referred to as a recommendation strategy. Figure 1 summarizes
the description of the sequential game and points out that the information available to
the forecaster for choosing ¢, respectively v, is formed by the X; ; forj =1,..., K
ands=1,...,T;(t — 1), respectively, s = 1,...,T};(¢).

As we are only interested in the performances of the recommendation strategy (1);),
we call this problem the pure exploration problem for multi-armed bandits and evaluate
the strategies through their simple regrets. The simple regret r; of a recommendation
¥ = (¢1)j=1,... ~ is defined as the expected regret on a one-shot instance of the



game, if a random action is taken according to ¢/;. Formally,

re=r() =" = py, where pt = pje = max p;

and py, = > Vi
j=1,...K

denote respectively the expectations of the rewards of the best arm j* (a best arm, if
there are several of them with same maximal expectation) and of the recommendation
;. A useful notation in the sequel is the gap A; = p* — u; between the maximal
expected reward and the one of the j—th arm ; as well as the minimal gap
A= min Aj.
J:A;>0

A quantity of related interest is the cumulative regret at round n, which is defined
as R, = Zle w* — pr,. A popular treatment of the multi-armed bandit problems is
to construct forecasters ensuring that ER,, = o(n), see, e.g., [LR85] or [ACBF02], and
even R,, = o(n) a.s., as follows, e.g., from [ACBFS02, Theorem 6.3] together with a
martingale argument. The quantities 7; = p* — uuy, are sometimes called instantaneous
regrets. They differ from the simple regrets 7; and in particular, R,, = 7] + ... + 1} is
in general not equal to r; 4 ... + 7,. Theorem 1, among others, will however indicate
some connections between r,, and R,,.

Goal and structure of the paper: We study the links between simple and cumulative
regrets. Intuitively, an efficient allocation strategy for the simple regret should rely on
some exploration—exploitation trade-off. Our main contribution (Theorem 1, Section 3)
is a lower bound on the simple regret in terms of the cumulative regret suffered in the
exploration phase, showing that the trade-off involved in the minimization of the simple
regret is somewhat different from the one for the cumulative regret. It in particular
implies that the uniform allocation is a good benchmark when n is large. In Sections 4
and 5, we show how, despite all, one can fight against this negative result. For instance,
some strategies designed for the cumulative regret can outperform (for moderate values
of n) strategies with exponential rates of convergence for their simple regret.

3 The smaller the cumulative regret, the larger the simple regret

It is immediate that for the recommendation formed by the empirical distribution of
plays of Figure 3, that is, ¢, = (0, + ... + 01, )/n, the regrets satisfy r,, = R, /n;
therefore, upper bounds on ER,, lead to upper bounds on Er,,. We show here that upper
bounds on ER,, also lead to lower bounds on Er,: the better the guaranteed upper
bound on ER,,, the worst the lower bound on [Er,,, no matter what the recommendation
strategies 1), are.

This is interpreted as a variation of the “classical” trade-off between exploration and
exploitation. Here, while the recommendation strategies 1,, rely only on the exploita-
tion of the results of the preliminary exploration phase, the design of the allocation
policies (,, consists in an efficient exploration of the arms. To guarantee this efficient



exploration, past payoffs of the arms have to be considered and thus, even in the explo-
ration phase, some exploitation is needed. Theorem 1 and its corollaries aim at quan-
tifying the amount of exploration needed. In particular, to have an asymptotic optimal
rate of decrease for the simple regret, each arm should be sampled a linear number of
times, while for the cumulative regret, it is known that the forecaster should not do so
more than a logarithmic number of times on the suboptimal arms.

Formally, our main result is as follows. It is strong in the sense that we get lower
bounds for all possible sets of Bernoulli distributions {v1, ..., vk } over the rewards.

Theorem 1 (Main result). For all allocation strategies (@) and all functions € :
{1,2,...} = R such that

for all (Bernoulli) distributions v1, . . ., Vi on the rewards, there exists a constant C >

0 with ER,, < Ce(n),

the simple regret of all recommendation strategies (1;) based on the allocation strate-
gies (p4) is such that

Sfor all sets of K > 3 (distinct, Bernoulli) distributions on the rewards, all different from
a Dirac distribution at 1, there exists a constant D > 0 and an ordering v1, . .., vk of
the considered distributions with

Corollary 1. For allocation strategies (p+), all recommendation strategies (), and
all sets of K > 3 (distinct, Bernoulli) distributions on the rewards, there exist two
constants B > 0 and v > 0 such that, up to the choice of a good ordering of the
considered distributions,

Er, > pfe 1.

Theorem 1 is proved below and Corollary 1 follows from the fact that the cumulative
regrets are always bounded by n. To get further the point of the theorem, one should
keep in mind that the typical (distribution-dependent) rate of growth of the cumulative
regrets of good algorithms, e.g., UCB1 of [ACBF02], is (n) = Inn. This, as asserted in
[LR85], is the optimal rate. But the recommendation strategies based on such allocation
strategies are bound to suffer a simple regret that decreases at best polynomially fast.
We state this result for the slight modification UCB(p) of UCB1 stated in Figure 2; its
proof relies on noting that it achieves a cumulative regret bounded by e(n) = plnn.

Corollary 2. The allocation strategy (p;) given by the forecaster UCB(p) of Figure 2
ensures that for all recommendation strategies (1) and all sets of K > 3 (distinct,
Bernoulli) distributions on the rewards, there exist two constants § > 0 and v > 0
(independent of p) such that, up to the choice of a good ordering of the considered
distributions,

Er, > Bn~ P,

Proof. The intuitive version of the proof of Theorem 1 is as follows. The basic idea
is to consider a tie case when the best and worst arms have zero empirical means; it
happens often enough (with a probability at least exponential in the number of times



we pulled these arms) and results in the forecaster basically having to pick another arm
and suffering some regret. Permutations are used to control the case of untypical or
naive forecasters that would despite all pull an arm with zero empirical mean, since
they force a situation when those forecasters choose the worst arm instead of the best
one.

Formally, we fix the allocation strategies (¢;) and a corresponding function & such
that the assumption of the theorem is satisfied. We consider below a set of K > 3
(distinct) Bernoulli distributions; actually, we only use below that their parameters are
(up to a first ordering) such that 1 > pq > po > pus > ... > px = 0and pg > px
(thus, e > 0).

Another layer of notation is needed. It depends on permutations o of {1, ..., K}.
To have a gentle start, we first describe the notation when the permutation is the identity,
o = id. We denote by [P and E the probability and expectation with respect to the K-
tuple of distributions overs the arms v4,...,vg. For i = 1 (respectively, : = K),
we denote by P; iq and E; ;q the probability and expectation with respect to the K-
tuples formed by &g, o, . . ., v (respectively, dg, Vo, . .., VK _1,00), Where §y denotes
the Dirac measure on 0. For a given permutation ¢, we consider similar notation up
to a reordering. P, and E, refer to the probability and expectation with respect to the
K-tuple of distributions over the arms formed by the vo-1(1),...,Vs-1(x). Note in
particular that the j—th best arm is located in the o(j)-th position. Now, we denote
for i = 1 (respectively, ¢ = K) by P; , and [E; ,, the probability and expectation with
respect to the K-tuple formed by the v, -1(;), except that we replaced the best of them,
located in the o(1)-th position, by a Dirac measure on 0 (respectively, the best and
worst of them, located in the o (1)-th and o (K )-th positions, by Dirac measures on 0).
We provide a proof in six steps.

Step 1 lower bounds by an average the maximum of the simple regrets obtained by
reordering,

1 —
m(?«X Eor, > ﬁ Z Eor, > MIK|M2 ZEU [1 - 1;[}0(1)771] )

where we used that under P,, the index of the best arm is o (1) and the minimal regret
for playing any other arm is at least pi; — po.

Step 2 rewrites each term of the sum over o as the product of three simple terms.
We use first that P; , is the same as P, except that it ensures that arm o(1) has zero
reward throughout. Denoting by

Tj(n)
Cj7n - Z Xj,t
t=1
the cumulative reward of the j—th till round n, one then gets
Eo [1 = Yotn] = Eo [(1= Yoy n) Lic,,.=0
=E, {(1 —Yot)ym) | Co(iyn = 0} x Py {Cyr1),n =0}

=Ei, [(1 — Po(1)n) } Po {Co1),n = 0} -



Second, iterating the argument from Py , to P .,
]El,a |:(1 - ¢o’(1),n) :| Z ]El,a |:(1 - wo(l),n) ‘ Ca(K),n = O:| ]P)l,o {CU(K),n = 0}
:]EK,O'|:(1 _wa(l),n>i| HD1,(7' {OO'(K),TL = O}
and therefore,

E, [1 - wa(l),n] P EK@' [(1 - wa(l),n)] IP>170' {CU(K),n = O} P, {Co(l),n = O} .

(1)
Step 3 deals with the second term in the right-hand side of (1),
]Pl,a' {CU(K),n - 0} - El,a |:(1 - ,LLK)TU(K)(TL)] 2 (1 - ,UIK)]EL‘TTO(K)(”) )
where the equality can be seen by conditioning on Iy, ..., I,, and then taking the ex-

pectation, whereas the inequality is a consequence of Jensen’s inequality. Now, the ex-
pected number of times the sub-optimal arm o (XK) is pulled under P; ,, is bounded by
the regret, by the very definition of the latter: (12 — px) E1 oTo(x)(n) < EioR,.
Since by hypothesis (and by taking the maximum of K'! values), there exists a constant
C such that for all o, E; ,R,, < Ce(n), we finally get

PI,U{CJ(K)JL _ 0} >(1- MK)CE(H)/(HZ*NK) )
Step 4 lower bounds the third term in the right-hand side of (1) as
]Pcr{cn(l),n _ 0} >(1- Ml)Ce(n)/Hz )

We denote by W,, = (I1,Y1,...,1,,Y,) the history of actions pulled and obtained
payoffs up to time n. What follows is reminiscent of the techniques used in [MT04]. We
are interested in realizations w,, = (41, y1, - . . , in, Yn ) Of the history such that whenever
o (1) was played, it got a null reward. (We denote above by t;(¢) is the realization of
Tj(t) corresponding to w,,, for all j and ¢.) The likelihood of such a w,, under P, is
(1- ,ul)tﬂm(”) times the one under Py .. Thus,

]P)U{Co(l),n = O} = ZPJ {Wn = wn}
= Z (1 - Ml)ta(l)(n) Py {Wn = wn} =E - [(1 - MI)TG(I)(H)}

where the sums are over those histories w,, such that the realizations of the payoffs
obtained by the arm o (1) equal x,(;), = 0 for all s = 1,...,t,(1)(n). The ar-
gument is concluded as before, first by Jensen’s inequality and then, by using that
p2E1 o Ty1y(n) < EioR, < Ce(n) by definition of the regret and the hypothesis
put on its control.

Step 5 resorts to a symmetry argument to show that as far as the first term of the
right-hand side of (1) is concerned,

K
ZEK,J |:1 - wa(l),n:| 2 7



Since Px , only depends on o(2),...,0(K — 1), we denote by P7(2):o(K=1) the
common value of these probability distributions when ¢ (1) and o (K) vary (and a sim-
ilar notation for the associated expectation). We can thus group the permutations o two
by two according to these (K — 2)-tuples, one of the two permutations being defined by
o (1) equal to one of the two elements of {1, ..., K} not present in the (K — 2)-tuple,
and the other one being such that o(1) equals the other such element. Formally,

ZEK,U¢U(1),H = Z EjQ"'.’jK_l Z wj,”

J2,-JK—1 JE{L,.... K\ {2,k -1}

< Z EJ2- iK1 [1] — % ;

J2s K -1

where the summations over ja, . .., jx—1 are over all possible (K —2)-tuples of distinct
elementsin {1,..., K}.
Step 6 simply puts all pieces together and lower bounds max E,r, by

i —
1K! 2 Z Ex,o[(1 = Yo)n) | Po{Co)n =0} P16 {Cox)n =0}

> H1 ;lm ((1 _ MK)C/(NTMK) (1- M1)C/”2)s(n) .

4 Upper bounds on the simple regret

In this section, we aim at qualifying the implications of Theorem 1 by pointing out that
is should be interpreted as a result for large n only. For moderate values of n, strate-
gies not pulling each arm a linear number of the times in the exploration phase can
have interesting simple regrets. To do so, we consider only two natural and well-used
allocation strategies. The first one is the uniform allocation, which we use as a sim-
ple benchmark; it pulls each arm a linear number of times. The second one is UCB(p)
(a variant of UCB1 where the quantile factor may be a parameter); it is designed for
the classical exploration—exploitation dilemma (i.e., its minimizes the cumulative re-
gret) and pulls suboptimal arms a logarithmic number of times only. Of course, fancier
allocation strategies should also be considered in a second time but since the aim of
this paper is to study the links between cumulative and simple regrets, we restrict our
attention to the two discussed above.

In addition to these allocation strategies we consider three recommendation strate-
gies, the ones that recommend respectively the empirical distribution of plays, the em-
pirical best arm, or the most played arm). They are formally defined in Figures 2 and 3.

Table 1 summarizes the distribution-dependent and distribution-free bounds we
could prove so far. It shows that two interesting couple of strategies are, on one hand,
the uniform allocation together with the choice of the empirical best arm, and on the
other hand, UCB(p) together with the choice of the most played arm. The first pair was
perhaps expected, the second one might be considered more surprising. We only state



Parameters: K arms

Uniform allocation — Plays all arms one after the other

Foreachroundt =1,2,...,

use ¢r = Ot mod x]> Where [t mod K] denotes the value of £ modulo K.

UCB(p) — Plays each arm once and then the one with the best upper confidence bound
Parameter: quantile factor p
Forroundst =1,..., K, play ¢+ = d¢

Foreachroundt =K +1, K +2,...,

1 Tj(t—1)

(1) compute, forall j = 1,..., K, the quantities fi;+—1 = m Z Xj,s
J o s=1

. N pln(t — 1)
2) use @ = 8;:  where ji_ TR R I v
I L A1)

(ties broken by choosing, for instance, the arm with smallest index).

Fig. 2. Two allocation strategies.

here upper bounds on the simple regrets of these two pairs and omit the other ones. The
distribution-dependent lower bound is stated in Corollary 1 and the distribution-free
lower bound follows from a straightforward adaptation of the proof of the lower bound
on the cumulative regret in [ACBFS02].

Table 1 indicates that while for distribution-dependent bounds, the asymptotic op-
timal rate of decrease in the number n of rounds for simple regrets is exponential, for
distribution-free bounds, the rate worsens to 1/+/n. A similar situation arises for the cu-
mulative regret, see [LR85] (optimal In n rate for distribution-dependent bounds) versus
[ACBFS02] (optimal /7 rate for distribution-free bounds).

4.1 A simple benchmark: the uniform allocation strategy

As explained above, the combination of the uniform allocation with the recommen-
dation indicating the empirical best arm, forms an important theoretical benchmark.
This section states its theoretical properties: the rate of decrease of its simple regret
is exponential in a distribution-dependent sense and equals the optimal (up to a log-
arithmic term) 1/4/n rate in the distribution-free case. In Proposition 1, we propose
two distribution-dependent bounds, the first one is sharper in the case when there are
few arms, while the second one is suited for large n. Their simple proof is omitted; it
relies on concentration inequalities, namely, Hoeffding’s inequality and McDiarmid’s
inequality. The distribution-free bound of Corollary 3 is obtained not as a corollary of
Proposition 1, but as a consequence of its proof. Its simple proof is also omitted.



Parameters: the history I1,...,I, of played actions and of their associated rewards
Y1,...,Yn, grouped according to the arms as Xj1,..., X1, (n), forj=1,...,n

Empirical best arm (EBA)
Only considers arms j with 7;(n) > 1, computes their associated empirical means

R 1 Tj(n)
an = Ty 2 Ko
and forms a deterministic recommendation (conditionally to the history),
Y = 0x where J; € argmax fij,n

J
(ties broken in some way).

Most played arm (MPA)
Forms a deterministic recommendation (conditionally to the history),

Yo =072 where J;; € argmax Tj(n) .
j=1,...,N
(ties broken in some way).
Empirical distribution of plays (EDP)

o e 1 ¢
Draws a recommendation using the probability distribution ¢, = — E or, -
n
t=1

Fig. 3. Three recommendation strategies.

Distribution-dependent Distribution-free
EDP EBA MPA EDP EBA MPA
Uniform Qe ©n O KK
n
_ _ Klnn (] pKlnn
UCB 1 © on2t-»n  0O/B 0
(» Ofpln)/n On~© On V= oy
Lower bound Qe On O K
n

Table 1. Distribution-dependent (top) and distribution-free (bottom) bounds on the expected sim-
ple regret of the considered pairs of allocation (lines) and recommendation (columns) strategies.
Lower bounds are also indicated. The [ symbols denote the universal constants, whereas the O)

are distribution-dependent constants.

Proposition 1. The uniform allocation strategy associated to the recommendation given
by the empirical best arm ensures that the simple regrets are bounded as follows:

Er, < Z A;j e~ A5n/K]/2 foralln > K ;
3:A;>0



1 n 2 8In K

Corollary 3. The uniform allocation strategy associated to the recommendation given
by the empirical best arm (at round K |n/ K |) ensures that the simple regrets are boun-
ded in a distribution-free sense, for n > K, as

2K In K
sup Er, <24/ —.
Vi,.-sVK n

4.2 Analysis of UCB(p) combined with MPA

A first (distribution-dependent) bound is stated in Theorem 2; the bound does not in-
volve any quantity depending on the A;, but it only holds for rounds 7 large enough,
a statement that does involve the A;. Its interest is first that it is simple to read, and
second, that the techniques used to prove it imply easily a second (distribution-free)
bound, stated in Theorem 3 and which is comparable to Corollary 3.

Theorem 2. For p > 1, the allocation strategy given by UCB(p) associated to the rec-
ommendation given by the most played arm ensures that the simple regrets are bounded
in a distribution-dependent sense by

K2p— 1

Er, < ——— n2(1-P)
p—1

4Kplnn
A2
The polynomial rate in the upper bound above is not a coincidence according to
the lower bound exhibited in Corollary 2. Here, surprisingly enough, this polynomial
rate of decrease is distribution-free (but in compensation, the bound is only valid after
a distribution-dependent time). This rate illustrates Theorem 1: the larger p, the larger
the (theoretical bound on the) cumulative regret of UCB(p) but the smaller the simple
regret of UCB(p) associated to the recommendation given by the most played arm.

for all n sufficiently large, e.g., such thatn > K + and n > K(K +2).

Theorem 3. For p > 1, the allocation strategy given by UCB(p) associated to the rec-
ommendation given by the most played arm ensures that the simple regrets are bounded
Sforalln > K(K + 2) in a distribution-free sense by

2p—1
Er, < 4Kplnn+K 220-p) _ o [Kplnn .
n—K p—1 n

Remark 1. We can rephrase the results of [KS06] as using UCB1 as an allocation strat-
egy and forming a recommendation according to the empirical best arm. In particular,
[KS06, Theorem 5] provides a distribution-dependent bound on the probability of not
picking the best arm with this procedure and can be used to derive the following bound

on the simple regret:
2
4 [1\"A?
Er, < - | =
ms 2 A4 <n)

j:Aj >0




for all n > 1. The leading constants 1/A; and the distribution-dependant exponent
make it not as useful as the one presented in Theorem 2. The best distribution-free
bound we could get from this bound was of the order of 1/v/Inn, to be compared to the
asymptotic optimal 1/4/n rate stated in Theorem 3.

Proofs of Theorems 2 and 3

Lemma 1. For p > 1, the allocation strategy given by UCB(p) associated to the
recommendation given by the most played arm ensures that the simple regrets are
bounded in a distribution-dependent sense as follows. For all a.,...,ax such that
ap + ... +ax = land a; > 0 for all j, with the additional property that for all
suboptimal arms j and all optimal arms j*, one has a; < aj«, the following bound
holds:

1 2(1—
Brn < o Z(aj”) (=
J#I*
for all n sufficiently large, e.g., such that, for all suboptimal arms j,

dplnn

ajnz=1+ A2
Jj

and a;n> K+2.
Proof. We first prove that whenever the most played arm J! is different from an optimal

arm j*, then at least one of the suboptimal arms j is such that T;(n) > a;n. To do so,
we prove the converse and assume that T;(n) < a;n for all suboptimal arms. Then,

K K
<Zai> nznzZTi(n) <ZTj*(n)+Zajn

where, in the inequality, the first summation is over the optimal arms, the second one,
over the suboptimal ones. Therefore, we get

Zaj*n < ZTj*(n)
J* J*

and there exists at least one optimal arm j* such that T- (n) > a;-n. Since by definition
of the vector (aq,...,ax), one has a; < aj;- for all suboptimal arms, it comes that
Tj(n) < ajn < a;j=n < Tj-(n) for all suboptimal arms, and the most played arm J is
thus an optimal arm. Thus, using that A; < 1 for all j,

Ern =EAj; < ) P{T;(n) > an}.
J:A; >0

A side-result extracted from the proof of [ACBF02, Theorem 1] states that for all sub-
optimal arms j and all rounds ¢t > K + 1,

dplnn

P{I, =j and Tj(t—1) > ¢} <2t whenever (> e
j

(@)



This yields that for a suboptimal arm j and since by the assumptions on n and the a;,
the choice ¢ = a;n — 1 satisfies ¢ > K + 1 and £ > (4plnn)/A2,

n

P{T;(n) > ajn} < ) ]P{Tj(t* 1)=ajn—1 and I, :j}

t=a;n

n
IR

t=a;n

1 _
o1 (ajn)2(1 p) 3)

where we used a union bound for the second inequality and (2) for the third inequality.
A summation over all suboptimal arms j concludes the proof.

Proof (of Theorem 2). We apply Lemma 1 with the uniform choice a; = 1/K and
recall that A is the minimum of the A; > 0.

Proof (of Theorem 3). We start the proof by using that > " ,, = 1 and A; < 1 for all
J, and can thus write

K
Er, =EAs; =Y AjEjn<c+ Y AjEd..
j=1 J:Aj>e

Since J;; = j only if T} (n) = n/K, that s, Vijn = ]I{J;;:j} < H{Tj(n)>n/K}’ we get

n
Er, < {0 > 2}
n<et Y APIT) >
j:Aj>e
A
Applying (3) with a; = 1/K leads to Erp<c+ Y 731 K2p=1) p20-p)
-

JiAj>e
where ¢ is chosen such that for all A; > ¢, the condition { = n/K —1 > (4plnn) /Af
is satisfied (n/K — 1 > K + 1 being satisfied by the assumption on n and K). The
conclusion thus follows from taking, for instance, ¢ = +/(4pKInn)/(n — K) and
upper bounding all remaining A; by 1.

5 Conclusions: Comparison of the bounds, simulation study

We now explain why, in some cases, the bound provided by our theoretical analysis
in Lemma 1 is better than the bound stated in Proposition 1. The central point in the
argument is that the bound of Lemma 1 is of the form O) n2(=P) for some distribution-
dependent constant (), that is, it has a distribution-free convergence rate. In comparison,
the bound of Proposition 1 involves the gaps A; in the rate of convergence. Some care is
needed in the comparison, since the bound for UCB(p) holds only for n large enough,
but it is easy to find situations where for moderate values of n, the bound exhibited
for the sampling with UCB(p) is better than the one for the uniform allocation. These
situations typically involve a rather large number K of arms; in the latter case, the
uniform allocation strategy only samples |n/K | each arm, whereas the UCB strategy
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Fig.4. K = 20 arms with Bernoulli distributions of parameters indicated on top of each graph.

focuses rapidly its exploration on the best arms. A general argument is proposed in the
extended version [BMS09, Appendix B]. We only consider here one numerical example
extracted from there, see the right part of Figure 4. For moderate values of n (at least
when n is about 6 000), the bounds associated to the sampling with UCB(p) are better
than the ones associated to the uniform sampling.

To make the story described in this paper short, we can distinguish three regimes:

— for large values of n, uniform exploration is better (as shown by a combination of
the lower bound of Corollary 2 and of the upper bound of Proposition 1);

— for moderate values of n, sampling with UCB(p) is preferable, as discussed just
above;

— for small values of n, the best bounds to use seem to be the distribution-free bounds,
which are of the same order of magnitude for the two strategies.

Of course, these statements involve distribution-dependent quantifications (to determine
which n are small, moderate, or large).

We propose two simple experiments to illustrate our theoretical analysis; each of
them was run on 10* instances of the problem and we plotted the average simple regrets.
(More experiments can be found in [BMS09].) The first one corresponds in some sense
to the worst case alluded at the beginning of Section 4. It shows that for small values
of n (e.g., n < 80 in the left plot of Figure 4), the uniform allocation strategy is very
competitive. Of course the range of these values of n can be made arbitrarily large by
decreasing the gaps. The second one corresponds to the numerical example described
earlier in this section.

We mostly illustrate here the small and moderate n regimes. Because of the chosen
ranges, we do not see yet the uniform allocation strategy getting better than UCB—based
strategies. This is because for large n, the simple regrets are usually very small, even
below computer precision. This has an important impact on the interpretation of the
lower bound of Theorem 1. While its statement is in finite time, it should be interpreted
as providing an asymptotic result only.



6 Pure exploration for bandit problems in topological spaces

These results are of theoretical interest. We summarize them very briefly; statements
and proofs can be found in the extended version [BMS09]. Therein, we consider the X'—
armed bandit problem with bounded payoffs of, e.g., [Kle04,BMSS09] and (re-)define
the notions of cumulative and simple regrets. The topological set X is a large possi-
bly non-parametric space but the associated mean-payoff function is continuous. We
show that, without any assumption on X, there exists a strategy with cumulative regret
ER, = o(n) if and only if there exist an allocation and a recommendation strategy
with simple regret Er,, = o(1). We then use this equivalence to characterize the metric
spaces X in which the cumulative regret ER,, can always be made o(n): they are given
by the separable spaces. Thus, here, in addition of its natural interpretation, the simple
regret appears as a tool for proving results on the cumulative regret.
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